Sequential Monte Carlo in Population
Dynamics

A THESIS PRESENTED
BY
STUART BURRELL
TO
THE SCHOOL OF MATHEMATICS AND STATISTICS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF MATHEMATICS

UNIVERSITY OF ST ANDREWS
F1FE, SCOTLAND
APriIr 2016

Supervisor: Dr. Len Thomas Stuart Burrell

Sequential Monte Carlo in Population Dynamics

ABSTRACT

WE AIM TO EMPOWER the undergraduate statistician to create effective SMC algorithms
by demonstrating an application in ecological population dynamics. To begin, we in-
troduce the notion of density dependance and an associated state-space model from [1].
Next, we fit this model for the North American Redhead (Aythya americana) with an
MCMC approach from [1]. Next, by reconducting the analysis from [1] over an ex-
tended time-frame, we obtained an additional benchmark with which to evaluate the
performance of SMC methods. The following three chapters progress from the theo-
retical foundations of SMC to the simplest of SMC algorithms, the bootstrap filter [2],
and on to the more sophisticated auxiliary particle filter (APF) of West and Liu [3].
This choice is thematic, and centres around the challenge to SMC known as particle
depletion. To conclude we outline a number of further enhancements for investigation,
including a method for real-time adaptation for the APF based on a novel diagnostic
derived from the concept of effective sample size.

iii

Contents

INTRODUCTION 1
THE NORTH AMERICAN REDHEAD 4
L1 Settingthescene. L L o 4
1.2 Density dependant populationmodel 00 7
A BENCHEMARK wiTH MCMC 11
21 TheBayesianparadigm L L oo 12
2.2 Thefoundationsof MCMC 13
2.3 MCMC analysis of the Redhead population 14
SEQUENTIAL MONTE CARLO METHODS 23
3.1 TheMarkovianmodel 24
3.2 Importancesamplingo oL oL 26
3.3 Sequential importance sampling L L L. 27
34 Theprocess L 28
BooTsTRrAP FILTERS 30
41 Motivation e e e e e 31
4.2 Mathematicaloverview 31
43 Thealgorithm o 34
4.4 Implementation Lo L 36
4.5 DPopulation and parameter estimation 41
AUXILLARY PARTICLE FILTERS 44
5.1 Parameter diversification 45
5.2 Deterministic projection resampling L. 49
5.3 Thealgorithm L Lo 50
5.4 Implementation. L L 54
5.5 Resultsand Performance 59
ENHANCEMENTS AND OPTIMISATION 73
6.1 Swarmdiagnostics. 74
6.2 Adaptiveshrinkage o o Lo Lo Lo 77

iv

6.3 A parallel approach with prior partitioning
6.4 Suggestions for furtherreading L L L 0oL

7 SUMMARY
APPENDIX A VISUALISATION OF QUTPUT
APPENDIX B DATA FROM Trends in Duck Breeding Populations 1955-2015

REFERENCES

11
1.2

2.1
2.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5

6.1

The Redh

Listing of figures

ead . .. e

Geographical distribution of the Redhead

1961-2002:
1961-2002:

1955-2015:
1955-2015:
1955-2015:

1961-2002:
1961-2002:
1961-2002:
1961-2002:

1955-2015

MCMC parameter posterior densities
MCMC trace plots and posterior densities

data population estimates between 1955 and 2015 with error bars .
bootstrap filter population estimates with 95 % quantile intervals
bootstrap filter with population and parameter estimation

APF population estimates for N = 10*
APF paramater posterior densities for N' = 0t ...
APF population estimates for N = 2 X 100 ...
APF parameter posterior densities for N =2 x 10°
: APF population estimates with NV = 104 ...

A plot of the proposed relationship between the AESS and 0 with ¢ = 0.95 .

vi

39
40
42

60
62
62
64
67

78

Acknowledgments

First and foremost I'd like to thank my supervisor Dr. Len Thomas for all his gener-
ous help and support. In addition, the work of Jamieson and Brooks [1], Doucet, de
Freitas and Gordon [2], and West and Liu [3] has been very instructive, for which I
am enormously grateful. Finally I'd like to give my appreciation to everyone who has
supported me throughout the year.

vii

1 certify that this project report has been written by me, is a record of work carried out by

me, and is essentially different from work undertaken for any other purpose or assessment.

Introduction

CONTEMPORARY BAYESIAN ANALYSIS is highly computational with an ever-growing and
diverse praxis. Of these, Sequential Monte Carlo (SMC) methods perform inference by
constructing samples from the distributions of unknown quantities through a Darwinian
evolutionary process. This is achieved, in part, by sequentially updating our estimations

as we incrementally introduce the data. Thus, SMC represents an approach to Bayesian
inference that lends itself, but is not restricted to, applications where data becomes available
sequentially in time. In recent years their popularity has soared, with applications emerging

in fields ranging from artificial intelligence and target-tracking, to ecological population

dynamics and forecasting.

We aim to empower the undergraduate statistician to create effective SMC algorithms
by demonstrating an application in ecological population dynamics. In particular, we
compliment the necessary theoretical machinery with a comprehensive example for the
North American Redhead, intended to translate the abstract into a clear process. One of
the themes we will see is the conflict between SMC methods and dimensionality. This
is highlighted in our discussions on results, which primarily focus on algorithmic perfor-
mance and efficacy.

Chapter 1 sets the scene for our example, starting with an introduction to the species
we consider, the North American Redhead, before moving on to the notion of density de-
pendant population growth and how to model it mathematically. This model forms the
backbone of later chapters, since simulation type methods such as SMC are based around
being able to generate possible future population states in a systematic way.

Next, chapter 2 aims to establish benchmarks with which to evaluate the performance
of our algorithms. Typically, one might use a simulated data set for this purpose. However,
to emphasize the real-world application of SMC, we opted to use real analysis derived from
the hugely popular Markov Chain Monte Carlo (MCMC) methods. In particular, our first
benchmark originates from the analysis of Jamieson and Brooks in [1]. Furthermore, we
reconducted their analysis to test a similar MCMC implementation, which we then used to
generate an additional benchmark for an extended time period.

The following three chapters represent a natural progression through SMC that grad-
ually builds in sophistication. Chapter 3 develops the core theory through a literature re-

view of [2]. In chapter 4 we describe and develop our first implementation, known as the

bootstrap filter (BF). Two modifications of the BF by West and Liu [3] yield the auxiliary
particle filter (APF), which we discuss in chapter 5. Additionally, we comprehensively as-
sess the performance of the APF over the two time frames, including a comparison with the
corresponding bootstrap filter analysis.

Our demonstrations will show the advantages of the APF, but, due to the need to con-
figure additional parameters for the algorithm itself, also bring to light the added complex-
ity it entails. Addressing this problem is one of the main objectives of Chapter 6, where we
develop diagnostic tools that enable the algorithm to automatically configure itself in real-
time. The final parts of this chapter include a suggestion for how to utilise parallel comput-
ing, and some suggestions for further reading.

We conclude with a brief chronological walkthrough of the material covered to distill

and condense the most important concepts we cover.

So once you do know what the question actually is,

you'll know what the answer means.”

The Hitchhiker’s Guide to the Galaxy

The North American Redhead

1.1 SETTING THE SCENE

THE PURPOSE OF THIS CHAPTER is to set the scene and introduce the mathematical model
which will be used throughout, along with its underlying concepts. First, we’ll introduce
the North American Redhead and the source of our data. Secondly, we look at density de-
pendance, a property which describes how the size of a population regulates its growth.
This will lead us on to the final part of the chapter, where we present a model of population
growth able to reflect this from [1], which is in part based on the work of Dennis and Taper

in [4].

Figure 1.1: The Redhead.”

The Redhead (Aythya americana) is a diving duck native to North America, with the
population distributed as far south as Mexico during the winter months and northern
Canada throughout breeding season, as depicted in figure 1.2. In 2004, Jamieson and Brooks
gave evidence supporting density dependance in the redhead population [1] and conjec-
tured a causal relationship between strong density dependance and diving, as opposed to
dabbling, ducks. As we shall see, this gave a suitably challenging testing environment for
our algorithms, since these models contain multiple parameters to estimate.

The current population size stands at approximately 1.2 million. This far exceeds the fig-
ure of 760,000 proposed by the North American Waterfowl Management Plan [5]. How-
ever, should future population analysis indicate a collapse, future management will likely
centre the conservation of the wetland where they breed and forage underwater [5].

In our analysis we use population estimates originating from the report Trends in Duck
Breeding Populations 1955-2015 [6] published by the U.S. Fish and Wildlife Service in 2015.
The relevant data from this report has been included in appendix B.

This dataset was particularly appealing for a number of reasons. Firstly, the large quan-

"Modified, image from http://carolinabirds.org.

http://carolinabirds.org

tity of complete data it contained. We were able to work with population point estimates
and standard errors for the population of Redheads from 1955 through to 2015. Crucially,
the historical extent of the data allowed us to consider the performance of SMC over two
significantly different and substantial time periods. Secondly, given the source and the ef-
fort expended to produce the report we would expect a low coefhicient of variation. Finally,
it allowed us to benefit from [1], which analysed a portion of this data set between 1961-

2002 using the Markov Chain Monte Carlo methods that we introduce in chapter 2.

Redhead
Aythye americansg

LEGEND

M vear Round

M summer (breeding)

B Winter {non-breading)
Migration

Mlap by Comell Lab of Oondhology
T Range data by NatureSarve

Figure 1.2: Geographical distribution of the Redhead.

ItImage from https://www.allaboutbirds.org

6

https://www.allaboutbirds.org

1.2 DENSITY DEPENDANT POPULATION MODEL

This section introduces the reader to the aforementioned ecological concept of density de-
pendance in more detail, and then goes on to explore the ways in which this can be mod-
elled in a formal mathematical framework. The choice of how to model density depen-
dance is controversial [1], and so for comparability we adopt the choice of [1], which is a

particular instance of the popular and very general state-space model.

1.2.1 DENSITY DEPENDENCE

Density dependance is a property that characterises the way the growth rate of a popula-
tion is influenced by the the number of that species in the environment. More formally,
we might consider how factors such as emigration, immigration, survival rate, or fecundity
influence the growth rate [7].

Density dependance is complex and may either positively or negatively impact the growth
rate. In addition, it may also be the case that the density dependance occurs over a larger
time period. For example the population size one or two years prior may affect the current
growth rate. This is referred to as first order and second order density dependance respec-
tively.

There are intuitive reasons for a population exhibiting density dependant growth which
can best be illustrated with an example. For a predatory animal, population increase may
lead prey to become scarce causing a reduction in population growth due to scarcity of a
primary resource: food. Competition for other valuable commodities can equally induce
density dependance, for example: nesting materials or precious breeding habitat.

These examples of negative density dependance naturally describe the way populations

eventually limit themselves in an environment to something ecologists call a carrying ca-
pacity [8]. Positive density dependance is often less apparent. However, simple examples
include how a dense patch of trees can help protect members from hazardous weather, or
how fish gather together in a dense shoal for protection from predators.

Methods for detecting density dependance has evolved significantly over time. Early
approaches used simple hypothesis testing, and considered whether there was sufficient
evidence in an example to reject a null hypothesis of density dependance [7]. This ap-
proach received a number of criticisms, primarily due to a lack of statistical power, mean-
ing it would often cause a rejection of the null hypothesis even when density dependance
is present [7]. This has encouraged recent researches to embark on a new model selection
approach [7]. Indeed, it is this approach that Jamieson and Brooks adopt to detect density

dependance in [1].

1.2.2 'THE POPULATION MODEL

Next, we consider the way in which we have mathematically modelled the Redhead pop-
ulation dynamics to incorporate the idea of density dependance discussed above. Our ap-
proach consists of a ‘system process model’, corresponding to the evolution of the true pop-
ulation size through time, and an ‘observation process’, which describes the relationship
between the true value and the recorded data. We first specify the system process model,
which originates from the work of Dennis and Taper [4] in 1994. This is a simple approach

and can be described as follows.

Model 1.2.1 Let N, denote the size of the population at timest = 0,1, 2, ..., and define N,

recursively by

Ny = Ny_iexp (bg + b1 Ny + 0 Zy), (11)

where by, by € R, 0 € R" and Z, ~ N(0,1).

However, notice that the above model allows the population at time ¢ to depend only
on the population at time ¢ — 1 and not previous time steps. In the analysis of Jamieson
and Brooks, it was necessary to generalise this model with an extension which allowed the
population to depend on an arbitrary specified number of previous years, as first suggested
by Dennis and Taper in [4]. Recall that we refer to the specified time lag as the order of the
density of dependance. This extended model, for which we are given strong evidence to use

with k£ = 2 for the Redhead population by [1], is as follows:

Model 1.2.2 Let Ny denote the size of the population ar timest = 0,1, 2, ..., and denote the

order of the density dependance by k € N. Then Ny is defined recursively by

k
N, =Ni_yexp(bo+ Y biNi_i +02y), (12)

=1

where by, by,,bpy €R, 0 € RY and Z, ~ N(0,1).

Furthermore, drawing on an article by Bonner in [9], we give an interpretation of these
parameters. First of all, the b; terms describe the influence of IV;_; on the growth rate at
N;_1, with the exception of by, which determines an expected growth rate given a popu-
lation of size very near zero. Secondly, o scales the size of the ‘process errors’, given by Z,

which account for random variation in the population growth.

Next, we recognise that the act of data collection entails its own inherent stochasticity.
Thus, we must formulate a second model, the observation process, to relate the true popu-

lation to the observed values. This is given by:

Yy = Ny + SiZy, (1.3)

where 1/; denotes the observation at time ¢, S; denotes the standard error of the data col-
lection and Z; ~ N(0,1).

As motivation for our next chapter, note an observation in [4], that the above models of
1.2.2 are Markov processes of order k. We now return to the Redhead to discuss the appli-
cation of a set of related methods known as Markov Chain Monte Carlo analysis, one of the

most popular Bayesian computational methods in modern usage.

10

There’s always a bigger fish.”

‘Qui-Gon Jinn’, The Phantom Menace

A Benchmark with MCMC

Markov Chain Monte Carlo (MCMC) is a powerful and widely applicable method for
statistical inference. In this section we present and discuss an implementation of MCMC
used to fit a density dependant population model for the Redhead, based on the work of
Jamieson and Brooks in [1]. In the first instance, we attempt to reproduce their results in
order to test our implementation. Secondly, we extend their analysis over a longer time-
period, which provided us with additional benchmarks to those in [1]. These benchmarks
are used to compare our SMC methods in chapters 4 and 5. However, preceding this we

give a brief overview of the foundational theory.

1

2.1 TuE BAYESIAN PARADIGM

In order to understand MCMC, or indeed SMC, we first need to appreciate the Bayesian
statistical paradigm they inhabit. In the world Bayesian statistics, all statistical inference
arises from application of Bayes’ theorem, originating from the paper [10] by Reverend
Thomas Bayes in the 18 century. Bayes’ theorem allows us to update our prior beliefs
about a parameter of interest in light of new data, and represents a logical approach to
learning. In the modern day, we typically state it in the following way for continuous pa-

rameters.

Theorem 2.1.1 Let 0 € © be a continuous parameter of interest with a prior distribution
p(0) which describes our current beliefs abour 0. Furthermore, suppose we observe data x =
(@1, ..., Tn) from a probability density function f(x|0). Then Bayes’ theorem states

_ @)
O =)

where the posterior distribution 7(0|x) represents our updated beliefs about 0 [11].

In plain English, Bayes’ theorem tells us that the posterior distribution is proportional to
the likelihood multiplied by the prior distribution. Importantly, this provides a framework
for making inference based on observations that are made sequentially in time. Naturally,
the ideal strategy would be to calculate the posterior distribution directly through analytic
means. However, this is not always possible since the denominator in equation 2.1 is equiv-

alent to the integral:

12

/ £(16)p(6) db (2.2)

S}

which may be high dimensional, complex and analytically intractable. MCMC and Se-
quential Monte Carlo methods constitute some of the options for circumventing this prob-
lem. They avoid the need to compute 2.2 by obtaining a sample whose density approxi-

mates the posterior distribution.

2.2 THE FOUNDATIONS OF MCMC

We begin by looking at the basic definitions on which MCMC is built. Firstly, a Markov
chain is a stochastically generated sequence of numbers x¢, 21, 22, ... such that the distribu-
tion of x41 1 only depends on z; [11]. In the context of state-space models, we refer to the
elements of the sequence as states. If we wish to create a Markov chain, we can construct a
series of stochastic maps p(x;41|z;), known as the ‘transition kernel’ or ‘system process’.
These define the evolution of the sequence. Thus, given some seed value z att = 0, the
transition kernel enables us to construct a chain. For our applications, where the true value
of the chain is considered unobservable or ‘hidden’, we are also required to specify an ‘ob-
servation process’ equation - as discussed in section 1.2.2. Together, these are known as a
Hidden Markov model (HMM) [12].

In order to use this construction for statistical inference, we first need to describe a key
property of Markov chains. In particular, it is possible to construct chains that converge to
a ‘stationary distribution’ [13]. This is a distribution such that, for potential values of the
chain ¢, j, the probability that z,, 11 = j given ,, = 7 is independent of n - providing 7 is

large enough. Importantly, the stationary distribution does not depend on the seed value of

13

the chain [11]. This is of particular value in scenarios where we have very little information
on which to base a choice.

Recall that in the Bayesian paradigm we are seeking to gain information about a poste-
rior distribution, either through analytic computation or by constructing a sample whose
density approximates it. Using the above theory, it is clear that if we can create a Markov
chain with a stationary distribution equal to the posterior, then we can construct a sample
from the posterior once convergence has occurred. Unfortunately, the best theoretical tools
to date cannot place adequate bounds on how many iterations are required to reach the sta-
tionary distribution [14]. However, from a practical point of view, we simply iterate the
chain to some reasonably large depth, known as the ‘burn in’, and then utilise diagnostics

which can offer sufficient indication of whether convergence has occurred.

2.3 MCMC ANALYSIS OF THE REDHEAD POPULATION

In this section we use MCMC to fit state-space model described in chapter 1 for the Red-
head. The results of Jamieson and Brooks in [1] are based on data from 1961 to 2002. We
first test our implementation by reproducing their parameter estimates and then update
their analysis in light of the available data for 1955-2015. Importantly, this allowed us to
test the performance of our SMC methods over two timeframes which provided valuable
insight.

Furthermore, as in all Bayesian analysis we need to specify priors for the parameters we
wish to estimate. We opted for the following choices given in table 2.1. Despite the prior
sensitivity analysis performed in [1], it is convincingly argued in [15] that the following are

superior choices, which we use both here and throughout. In addition, on the basis of [15],

14

we omit a prior sensitivity analysis of our own.

Parameter Prior Distribution

bo N(0,1)
by N(0,1)
by N(0,1)
o I'~1(0.001, 0.001)

Table 2.1: Prior distributions for the model parameters.

We will now present an example of the code used to implement our MCMC analysis,

before moving on to a brief discussion of the results.

231 CobpE

The analysis was performed with the programming language R [16] with the package ‘rjags’
which allows JAGS (Just Another Gibbs Sampler), a tool for MCMC implementation, to
be used an R environment. We set k& = 2 in model 1.2.2, corresponding to second order
density dependance. This is the most probable model according to [1]. For consistency
with [1], this example implementation considered the data between 1961 and 2002 and
used MCMC simulations with 2,020,000 iterations, including a burn in of 20,000. The
following code is based on code obtained from L. Thomas, which in turn is closely related

to code found in [9].

15

©°

20

21

22

library(rjags)

library(XLConnect)

in.data <— readWorksheetFromFile("duckdata.x1lsx", sheet=1)
Nhat <— in.data[7:48, 16]/1000

SE <— in.data[7:48, 17]/1000

bigT <— length(Nhat)

modelstring <—

"model{

Priors

b_0, b_1l and b_2
b[1] ~ dnorm(@, 1)
b[2] ~ dnhorm(@, 1)
b[3] ~ dnorm(@, 1)

Population size at times 1,2 with standard error, in millions
N[1] ~ dnorm(Nhat[1], 1/(SE[1]*SE[1]))T(0,)

p[1] <— log(N[1D)

N[2] ~ dnorm(Nhat[2], 1/(SE[2]*SE[2]))T(0,)

p[2] <= log(N[21)

16

23

24

26

27

28

29

30

3

32

33

34

35

36

37

38

39

40

41

42

4

[

44

Sigma determines size of random fluctuations in the process
model

tau ~ dgamma(0.001, ©.001)

sigma2 <— 1/tau

sigma <— pow(sigma2, 0.5)

for(t in 3:bigT){
Process model

Eplt] <— p[t—1] + b[1] + b[2]*exp(p[t—11D+ b[3]*exp(p[t—2D)

Realized value with process error
p[t] ~ dnorm(Ep[t], tau)

N[t] <— exp(p[t])

Observation model
prec[t] <— 1/(SE[t]*SE[t])

Nhat[t] ~ dnorm(N[t], prec[t])

Input data

dat = list('Nhat' = Nhat,'SE' = SE, 'bigT' = bigT)

17

45

46

48

49

50

51

52

54

Load model

m <— jags.model(textConnection(modelstring), data = dat)
Burn in, in addition to the default burn in of 1000
update(m, 19000)

Sample for inference

n.iter <— 2000000

samples <— coda.samples(m, c("b[1]", "b[2]", "b[3]", "sigma"), n.

iter=n.iter)
Plot samples
plot(samples)
Record and print summarized results
results <— summary(samples)

print(results)

1961-2002: MCMC implementation for parameter estimation.

18

2.3.2 REsuULTS

The first stage in assessing the output of an MCMC analysis is to determine whether it is
likely the burn-in was sufficient for convergence to the stationary distribution. One diag-
nostic for this is to evaluate the ‘trace plots’, which tell us the realised value of the chain at
each iteration. Figure 2.2, which is included at the end of this section, gives the trace plots,
along with the posterior parameter distributions for the test 1961-2002 analysis (noting that
parameter b; is labelled b[i + 1]). The important observation to make from figure 2.2 is
that that the trace plots are consistently centred around a common value, thus creating a
broad horizontal strip. From the discussion in [13], we can infer that this is a reasonable
indication that convergence has occurred. For our purposes, when supported by [1], this

is sufficient evidence that the stationary distribution has been reached. However, in other
contexts, the reader may wish to make use of diagnostics detailed in [17] by Gelman and
Brooks. Next, we consider our results for the initial analysis over 1961-2002 and include the

point estimates from [1] for comparison.

Parameter Point estimates [1] Posterior Mean 2.5% Quantile 97.5% Quantile

bo 0.194 0.191 0.0427 0.390
by 0.358 0.360 —0.617 1.199
by —0.652 —0.660 —1.450 0.250
o 0.078 0.0919 0.0393 0.160

Table 2.2: 1961-2002: MCMC parameter point estimates and quantiles with corresponding point estimates from [1].

Table 2.2 illustrates that our estimates closely match that of Jamieson and Brooks in

[1]. The values deviate with errors in the order of 1072 to 1072, which is well within the

19

bounds of expected discrepancy due to the randomness inherent in the procedure (known
as Monte Carlo error). Our ability to reproduce these results gives us confidence in using
this same algorithm to generate benchmark values using data from 1955 to 2015. We give

the a summary of the results from this extended analysis in table 2.3.

Parameter Posterior Mean 2.5% Quantile 97.5% Quantile

bo 0.0738 —0.0338 0.185
by 0.234 —0.404 0.875
by —0.328 —0.991 0.335
o 0.117 0.0689 0.171

Table 2.3: MCMC 1955-2015: parameter point estimates and quantiles.

We omit the trace plots, since they were satisfactory and similar to figure 2.2. Figure 2.1

gives plots of the posterior densities (recall that b; = b[i + 1]).

Density of b[1] Density of b[2]
=]
w - @ 7]
2
- n
=
~ =
(=1
e T T T = T T T T T
02 0.0 0.2 04 10 05 0.0 0.5 1.0
N = 2000000 Bandwidth = 0.003024 N = 2000000 Bandwidth = 0.01936
Density of b[3] Density of sigma
g
-]
s 2 4
5 o
o
= T T T T T T e T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 0.05 0.10 0.15 0.20 0.25
N = 2000000 Bandwidth = 0.02 N = 2000000 Bandwidth = 0.00153

Figure 2.1: 1961-2002: MCMC parameter posterior densities.

20

As you would expect, the larger data set with the extended analysis produced narrower
confidence intervals, which is visually reflected the density plots. In addition, the mean val-
ues of the posteriors have changed considerably in the case of by, b; and bs. This is likely
due to the over simplicity of our model, since the actual environment contains a huge
number of additional covariates such as hunting quotas. For our purposes this is not an
issue, since we are still able to compare the performance of SMC with MCMC. Despite the
change in parameter estimates, it is interesting to note that there is a similar pattern. Specif-
ically, over both time periods we observe [by| < |b1| < |ba| with by, by, > Oand by < 0,
where b; denotes the mean of the posterior distribution for b;.

We conclude this chapter with a comment on what this pattern might imply from an
ecological perspective. It is suggested in [1] that diving ducks such as the Redhead may de-
lay breeding due to challenging environmental conditions such as a lack of food or a loss
of habitat. This yearly inconsistency could incur this form of density dependance where
the population two years prior has a large negative impact on the current growth rate. For
example, if the population two years prior was particularly large, there may have been a
scarcity of food resulting in a change in breeding habits. This could have resulted in less
ducks at breeding age in the current year, thus reducing the growth rate. On the other
hand, if the current population was the same but the population two years prior was in

less, then scarcity of food less likely to be an issue and impact breeding.

21

Trace of b[1]

’ T T T T
[500000 1000000 1500000
lerations
Trace of b[2]

T T T T
o 500000 1000000 1500000 2000000

lerations

Trace of b[3]

o T T T T
o 500000 1000000 1500000 2000000
terations
Trace of sigma

T T T T
o 500000 1000000 1500000 2000000

Figure 2.2: 1961-2002: MCMC trace plots and posterior densities.

22

Density of b[1]

-
o
° T T T T T
02 0.0 0.2 0.4 06 LE]
N = 2000000 Bandwidih = 0.004604
Density of b[2]
o
= T T T T T
15 10 0.5 00 0.5 10 15
N =2000000 Bandwidth = 0.02856
Density of b[3]
= e
- -
-
o
e T T T T T T
20 15 10 05 0.0 05 10
N = 2000000 Bandwidth = D.02651
Density of sigma
@
-
~ —
= T T T T T
0.00 008 010 015 0.20 028 030

N = 2000000 Bandwidth = 0.001686

We demand rigidly defined areas of doubt and

uncertainty!

‘Vroomfondel’, The Hitchhiker’s Guide to the Galaxy

Sequential Monte Carlo Methods

IN THIS SECTION we aim to build an appreciation for the theoretical foundations of SMC.
We review the comprehensive introduction[2] by Doucet, de Freitas and Gordon. Our
hope is that this will illuminate the code presented in later sections by allowing the reader
to recognise how these methods function on a deeper level. Starting with the basic theory,
we will progress to the core methods known as ‘importance sampling’ and ‘sequential im-
portance sampling’.

First, we introduce the class of model within which we can apply SMC and discuss a di-

rect approach to Bayesian inference in this context. This motivates our sections by yielding

23

a rephrasing of the challenges presented by equation 2.2.

3.1 THE MARKOVIAN MODEL

The SMC methods we present require that we model the data in such a way that employs
the idea of a Markov chain, as described in chapter 2. Working with discrete time, we con-
sider a collection of hidden states {z; : ¢ € N}, which, for example, might represent

the true population of the population size at time ¢. In addition, recall that the evolution
of the Markov chain is governed by a system process defined by the density p(z¢|z:—1).
Note that, in our population analysis, we use second order Markov processes with densities
p(x¢|Ti—1, 24—1), which we briefly discuss later.

Our model must include a prior distribution p(zy), which allows us to simulate a po-
tential trajectory of the population. Recall that the remaining step is to model the noise
inherent in the observation of the hidden states, which is done by defining a new density
P(y¢|z¢). This ‘observation process’ describes the process of observing 1 at when the popu-
lation is in the state z;.

Our aim is to try and estimate the most likely sequence of states .+ given a set of obser-
vations .. This is done by finding a sample whose density approximates the posterior dis-
tribution p(2o.|y1.+). In practice, this is often done sequentially. Suppose we make a new
observation ¥ 1, then, we wish to find an approximation of the posterior p(@y11|y1.4, Y1) =
P(@141|Y1:441), which represents our new beliefs about the state of the system given the
new information.

The above process can be described mathematically and naturally fits inside the Bayesian

paradigm due to the sequential nature of the way we update our beliefs. In order to clearly

24

see how the challenge of computing the integral 2.2 manifests itself in this setting, we look
at the following form for the posterior distributions given by Bayes’ theorem.
p(yl:t ‘ xO:t)p(xO:t)

P(To|yre) = T P(ralton)p(ron) dos (3.1)

[2]. Estimating p(o.|y1.¢) is known as smoothed inference, by virtue ofp(z1.|y1.¢) also
being known as the smoothing distribution [18]. To construct the above, we consider the

recursive formulae:

Prediction : p(z|y14-1) = /p(a:t|xt_1)p(xt_1|y1;t_1) dxi_y (3.2)

; P(ye|) p(ze|yr.e-1)
pdating : p(x|yr) fp(yt|It)p($t|y1:t_1)d$t (3.3)

[2]. From this, we may also consider filtered inference. In this case we focus on the cur-
rent state of the system, as opposed to the entire trajectory. Appropriately, p(z¢|y1.¢) is also
known as the filtering distribution [18]. These formulae make clear how a direct approach
gives rise to the problem of complex integration as discussed in section 2.1. Next, we look
athow SMC methods address this issue. First of all, we introduce importance sampling,
which forms the basis of all of our methods. A minor modification yields a second method,
sequential importance sampling, which makes importance sampling computationally feasi-

ble for recursive estimation [2].

25

3.2 IMPORTANCE SAMPLING

In order to avoid calculating 2.2, SMC methods attempt to create a sample whose density
approximates the posterior distribution. The elements of this sample are often referred to
as particles from which the alternative term for SMC methods, particle filters, is derived. In
an ideal world we would sample from p(xo.;|y1.;) directly, but it is rarely feasible to do this
efficiently [2]. An alternative plan is to use ‘importance sampling’, where we introduce a
function 7(2o.t|y1.¢), known as the importance function, which we can from sample in-
stead. The only restriction we place on 7 is that it must contain the support of p(xo.¢|y1:¢),

that is

{zo4[p(wo:t|y14) > 0} C {wo.e|m(20.t|y1:4) > 0} (3.4)

for all feasible .¢. This condition is required to avoid degeneracy in the definition of the

importance weight Ww(To..):
P(zo:t|y1:t)

71-(0750:t|y1;t). (3.5)

w(zoy) =

The process of weighting is a central theme throughout all of the methods we discuss. In
order to understand the motivation for this, suppose you wanted to compute the expected
value of some function f; of z.; with respect to the posterior distribution. Elementary

statistics tells us if you wished to do this analytically you would need to compute

f Je(o.4)p(Zo:t|Y1:4) dTo.t
fp(x[]:t‘yl:t) dwO:t

) (3.6)

26

which may be infeasible. However, by simple algebraic manipulation we see the substitu-

tion suggested by 3.5 yields:

f ft(Z'O:t)w(xO:t)W(xO:t‘ylst) dxo.
f W(To.4) T (Lot |Y1:0) Ao

(3.7)

which can be estimated numerically by sampling from 7(2¢.;|y1.:) and using standard
methods [2]. This highlights the immense value of introducing an importance function

to generate weights. However, it is not evident from the above of an efficient method to
calculate w(xg.¢41) from w(x¢.;). Thus, we are required to recompute weights for the en-
tire trajectory at each time step. This is computationally undesirable and motivates our next
method, sequential importance sampling, which proposes a modification to bypass the

need for repeated calculation.

3.3 SEQLJENTIAL IMPORTANCE SAMPLING

Sequential importance sampling (SIS) is a Monte Carlo method that is almost identical to
importance sampling, but modified to drastically increase efficiency for recursive estima-
tion. Firstly, recall the importance function 7(2o.t|y1.+). In SIS we choose 7 by making the

assumption that is can be calculated recursively using the formula:
¢
(th‘ylt =TT iUo HW xkho:kfl-yl:k)- (3.8)

k=1

[2]. This small modification can be of great benefit. Specifically, we see that

P(Ye|Te)p(ae|2i—1)
W(It’%:t*l, ylzt)

w(zo.r) X w(To:1-1)

27

[2]. This recursive form minimises computation, and includes familiar terms such as the
likelihood p(y:|x+) and system process equation p(z;|x;_1) making it easy to implement.
This concludes our theoretical introduction of SIS, and now we move on to clarify the

exact process the implied by the above.

3.4 'THE PROCESS

The theory we have presented gives a clear mathematical solution to the problem at hand.
However, in this brief section we aim to translate it in such a way that the reader gains a
concrete idea of the step by step inferential process it implies.

The process of sampling from the importance function 7 and assigning weights are the
two main ideas steps these methods. The sample we obtain from 7 is known as the parti-
cle swarm. Thus, our aim is for the particle swarm at time ¢ to approximate the posterior
distribution. We do this by making use of the data to assign a weight to each particle in the

swarm. To summarise, this can be described in three steps:

Srep 1 At time t generate a particle swarm from m(Zo.¢|[Y1:¢, To:t—1)-

Step 2 Use the data y; to calculate a weight for each particle in the swarm using equation

3.9 in the case of SIS, and 3.5 for basic Importance Sampling.

Step 3 Use the weighted sample to estimate summary statistics of the posterior distribu-

tion, such as the mean.

This weighted sample is sufficient for making inference about the posterior distribution.
However, we usually choose to normalise the weights at each stage, by dividing through by

their sum, which ensures they remain bounded as this process iterates.

28

To conclude, observe that after the second step one may resample with respect to the
weights in order to create an unweighted approximation to the posterior, thus eliminating
the need to record past weights. This idea brings us to our next chapter which deals a re-
lated method named the bootstrap filter (BF). This algorithm includes a resampling stage,
which can be interpreted as introducing the idea of Darwinian evolution if we reimagine
the particles as animals. In particular, the process of resampling simulates the process of
‘survival of the fittest’, where the measure of a particle’s fitness is its weight. This gives rise
to the terminology we use later, where particles from the swarm at ¢ = 0 are considered the
‘ancestors’ of the particles they generate through the resampling process. In turn, each par-
ticle at time ¢ > 1 is referred to as the ‘descendant’ of some ancestral particle. Importantly,
this simulation of Darwinian evolution begins to address some of the problems SIS faces
with high-dimensionality. Specifically, SIS methods can suffer from a phenomenon known

as particle depletion, which is a central theme of later chapters.

29

‘Even the smallest person can change the course of the

future.’

‘Galadriel’, The Fellowship of the Ring

Bootstrap F ilters

THE BOOTSTRAP FILTER is a form of sequential importance sampling where we adopt the
prior distribution as the importance function and include a resampling step. In this chapter
we first describe the motivation for this algorithm and give a mathematical overview of the
process. We initially describe the process with first order Markov processes, before going

on to explain how to adapt it for the second order case relevant to our population model.
Thereafter, we give our implementation of the algorithm and consider its performance.

To conclude, we illustrate the limitations of the bootstrap filter with an example where we

estimate both the population size and the parameter values.

30

41 MOTIVATION

Sequential importance sampling incurs a problem which will arise as a recurrent theme
throughout our study of SMC, particle depletion. What we see is that as ¢ increases the
weights become more and more skewed [2]. Eventually, one particle may accumulate all
of the weight, giving us a very limited amount of information about the posterior distribu-
tion. One mathematical way to measure this is called the effective sample size (ESS), which
we will meet in Chapter 6. This is a diagnostic which tells us how many observations we es-
sentially have. For example, the case where one particle has accumulated all of the weight is
roughly equivalent to one observation. In order to help obtain a larger effective sample size,
statisticians have created the bootstrap filter.

The bootstrap filter achieves this through the process of Darwinian evolution we briefly
described in Chaper 3. To recap, if think of the particles as animals, then resampling causes
those with high weights to produce ‘offspring’. On the other hand, particles with a low
weight may become scarce or extinct. This creates less discrepancy in the weights by creat-
ing more particles which reflect the data to a similar degree. Thus, future particle samples
will be diversified.

Finally, our motivation for using the prior distribution to define the importance func-
tion is that it simplifies the calculation of the weights. This will become apparent as we

consider the the algorithm from a more mathematical perspective in the next section.

4.2 MATHEMATICAL OVERVIEW

Mathematically, there are two stages which deserve our interest. First of all, we consider the

computational ramifications of defining the importance function using the prior distribu-

31

tion, and secondly, we look closely at the resampling step.

First, recall equation 3.9 from Chapter 3:

p(yelze)p(ae| 1)

wW(xo) < W(Top—) 3.9)
(Ot) (o1 1) W(xt’xl):t—laylzt) (
Next, suppose we adopt the following importance function
t
T(Zo:t|y14) = p(xo:t) Hp Ty|TR-1) (4.1)

k=1

which implies 7(2¢|zo.4—1, Y1:t) = p(2¢|2—1). Itis then immediate that 3.9 simplifies to:

w(wo.e) o w(To:p—1)p(Ye|Te). (4.2)

Thus, in order to update the weights for the bootstrap filter, we only need to calculate the
likelihood. This can be derived from the observation process.
Next, we discuss the resampling step. First, recall that the particle swarm at time ¢ repre-

sents a weighted empirical estimate of the posterior [2]. This estimate of p(zo.¢|y1.¢) which

we denote Py (%o.¢|y1:+) can be expressed mathematically. For a particle swarm m((ﬁ%, with

(%)

normalised weights w; ’, we have

N

FN<dx0:t‘y1t = Z (z dIOt (4-3)

32

where N is the number of particles and 0 is the Dirac mass function given by

0 Zo:t ¢ dzO:t
6_) (droy) = (4.4)

Zo:¢
1 Xo:t S dmO:t
[2]. Though it may appear technical, equation 4.3 determines the distribution by simply
calculating the proportion of particles that lie within each interval dz(.;. In the bootstrap
filter, we modify this approach so that we estimate the posterior by replacing the weights
with a variable Nt(i), such that Zfil Nt(i) = N. These determine the number of offspring

of particle xgi Thus, we have

N
_ 1
PN(dSCO:t|y1t = N Z (z dlUOt) (4-5)

[2]. Observe that this construction allows us to simulate particles becoming extinct, since if
Nt(i) = 0, then the term IE(()Z% vanishes from the sum.

Ny can be defined in various ways, and the way we have chosen was first introduced by
Gordon in 1993 [19] and described in [2]. They proposed to sample from {@@ 11,...,N}
with respect to the multinomial distribution parameterised by the weights w!”. This gives a
sample of surviving particles approximately distributed according to the weights. However,
in our implementation we sample integers from {1, ..., N } as opposed to particles. This
improves computational efficiency and achieves the same effect.

On a final note, observe that resample according to the weights effectively ‘stores’ them

in the sample, since a sufficiently large sample approximately reflects the distribution of

the weights. This is computationally convenient because it alleviates the need commit the

33

weights to memory for use when we come to calculate the next batch.
We now proceed to the next section where we first present the algorithm in plain En-
glish. We hope this will serve as a reference point for the reader when trying to understand

the more technical R code in section4.4.

4.3 'THE ALGORITHM

The following is a general version of the algorithm based on that described in [2], which we

will then adapt this for our analysis of the Redhead.
Step I: Initialisation (t = 0)

* Set N € N to be the desired number of particles.
« SetT' € N to be the desired runtime.
* Fori=1,...,N, samplef((f) ~ p(xg).

© Sett = 1.
Step 2: Importance Sampling Step

* Fori =1, ..., N,sample fgi) ~ p(xt|a:§i_)1).

* Fort=1,..., N, assign fii) the importance weight
=0 o P [0 G
w; <= Pr(y|z,”) (4.6)
* Fori =1, ..., N, normalize the weights by setting

wi o Yt (4.7)

Step 3: Selection Step

* Construct a set S by resampling with replacement N integers from the set

{1, ..., N} such that

fort =1,...,N.

* Fori=1,..., N set

2z (4.9)
* Ift = T then stop. Else, sett <— ¢ + 1 and return to step 2.

In order to make this algorithm suitable for our application, we first let the population
size Ny take on the role of z; above. Furthermore, since we use a second order density de-
pendant model, it is necessary to use priors to simulate the particles atbotht = Oandt = 1
during the initialisation phase. Similarly, we need the system process equation to reflect the

fact we are now working with a second order Markov process, and so p(mgz) \Igl) becomes

P(Nt’Nt(i)l, Nt(i)z), where

2
p(Nt‘Nt(i)lv Nt(i)2> = Nt,1 eXp (bo -+ Z biNtfi + O'Zt). (410)

i=1
We must also consider the observation process, from which compute the likelihood for

the weights. Recall from Chapter 1 that the observation process is given by

Yr = Ny + SiZy. (4.11)

35

o

=N

©

1

This allows us to easily calculate the likelihoods in R since it implies y; ~ N (x;, S?), where
S; is the standard error at time ¢.
We are now prepared to move on to the next section and see how the above description

translates in to a working implementation in R.

4.4 JMPLEMENTATION

The following gives example R code for a bootstrap filter which allows us to estimate the
yearly population size of the Redhead between 1955 and 2015. Data along with standard
errors are sourced from the USFWS report discussed in Chapter 1 [6], and the fixed param-
eter choices originate from [1]. The following was run in RStudio [20] on an intel dual
core 2.7 GHz processor. Finally, the code for visualising the output is analogous to that in

appendix A.0.2.

Loading data
library(XLConnect)
data.input <— readWorksheetFromFile("duckdata.xlsx",sheet=1)

duck.N <— data.input[,16]/1000

Model Parameters

k <— 2

Filter Parameters
number <— 10000

endtime <— 61

36

20

21

22

23

24

26

28

29

30

32

Storage for particle swarm and correspondng parameters
swarm <— matrix(NA, number, endtime)

param <— matrix(NA, number, 2+k)

Population priors

for(t in 1:k){swarm[, t] <— rnorm(Cnumber, duck.N[t], duck.SE[t])}

Parameter priors
param[,1] <— 0.194
param[,2] <— 0.358
param[,3] <— —0.652

param[,4] <— 0.0775

The process model

- Imod.nextyear <— function(swarm2, params, num){

hidden <— swarm2[, 2]*exp(params[,1] + (params[,2]*swarm2[,2])+(
params[,3]1*swarm2[,1]) + params[, 4]*rnormCnum,@,1))

returnChidden)

Weights via likelihood from observation model

wts.L <— function(swarml, time, dat.N, dat.SE){

37

34

-

°

4(

'

45

46

wts <— dnorm(dat.N[time], swarml, dat.SE[time])
wts <— wts/(sum(wts))

return(wts)

Filter loop
if(endtime > 2){
for(t in 3:endtime){
swarm[,t] <— mod.nextyear(swarm[, (t—2):(t—1)], param, number)
wts <— wts.L(swarm[, t], t, duck.N, duck.SE)
smp <— sample(l:number, number, replace = TRUE, prob=wts)

swarm <— swarm[smp,]

1955-2015: BF implementation for population estimation.

441 RESULTS AND PERFORMANCE

The primary focus of this section is to assess the output of our analysis and judge the per-
formance. In particular, this will lead to further insight on the inner-workings of the BF,
which will motivate some of our adaptations in chapter 5. We begin by presenting a plot of

the data with error bars.

38

1.4

1.2
|

Population Size (in millions)
06 08
| |

0.4

L L L5 I O O
1955 1965 1975 1985 1995 20056 2015

Year

Figure 4.1: 1955-2015: data population estimates between 1955 and 2015 with error bars.

We wish to use the output of the BF to suggest the most probable trajectory of the popu-
lation given the above data. In figure 4.1 we have plotted the mean of the posterior samples
the BF generated, along with the corresponding 95% quantile intervals.

This is a promising output. In particular, the quantile intervals are healthily distributed
about the mean and suggest a balanced and informative posterior at each stage. Impor-
tantly, we observe that this suggests significant particle depletion did not occur, and that
our algorithm performed as intended. Furthermore, the trajectory suggested by our analysis
appears to be a realistic interpretation of the noisy data.

To end this section, we briefly discuss runtime performance. Our simulation above used
a particle swarm of 10, 000 particles, with a runtime of 1.07 seconds. One important per-
formance diagnostic of an algorithm is how well it scales as instance size increases. Of par-

ticular importance for SMC is the scaling with respect to the number of particles used, since

39

data

1.4

o estimates

-~ quantiles

08 10 12

Population Size (in millions)
0.6

0.4

L L O O O O A O I
1955 1965 1975 1985 1995 2005 2015

Year

Figure 4.2: 1955-2015: bootstrap filter population estimates with 95 % quantile intervals.

for challenging high dimensional instances we may require a very large swarm. To test this,

ran further simulations with 10°, 10 and 2 x 106 particles.

Number of Particles Runtime (seconds)

10* 1
10° 13
106 140
2 x 10° 462

Table 4.1: Bootstrap filter runtimes as /N varies.

Pleasingly, for the instances with 104, 10° and 108 particles the runtime increased by a
factor of approximately 11 at each step, which suggest a roughly linear relationship. How-

ever, the instance with 2 x 106 particles contradicted this, with a factor increase of over 3, as

40

opposed to the expected 2. We conclude that within smaller instances the runtime behaves
approximately linearly, however this relationship will eventually break down, perhaps due
to memory shortages. To counter this, one might consider implementing elements of the

algorithm in C, where there is a well known increase in speed.

45 POPULATION AND PARAMETER ESTIMATION

In this section we will explore what happens when we expand the scope of the bootstrap
filter and attempt to simultaneously estimate both the population size and the parameter
values. This will bring us back to the central theme of particle depletion, motivating our
further attempt to remedy this problem in Chaper 5.

Mathematically, we modify the bootstrap filter so that the particles :Uézi are vectors, con-
taining both the estimate of the population and a set of potential model parameters. Due
to this adaptation, we must now specify prior distributions for the parameters, and the pro-
cess equation must respect each particles associated parameters. The prior distributions are
similar to those we used for our MCMC analysis given in table 2.1.

We omit our modifications to the code, since they were minor and analogous to aspects
of the code found in Chapter 5. On running the new version of the algorithm, we obtained
the population estimates given in Figure 4.3.

There are several important inferences to be made. First, notice how the quantiles have
shrunk down to a point for the first few years. Looking at this from the perspective of the
Darwinian evolution metaphor, then we deduce that very few particles must be the set of

‘ancestors’ (as defined in 3.4) to the ‘descendant’ particles in the final sample. We can verify

this in a number of ways. One such way is to label each ancestor and attribute the same

41

data s

LY

1.4

o estimates

-~ quantiles -

08 10 12

Population Size (in millions)
0.6

L L O O O O A O I
1955 1965 1975 1985 1995 2005 2015

Year
Figure 4.3: 1955-2015: bootstrap filter with population and parameter estimation.
label to all of its descendants. On implementing this, we found that the final samples from

the parameter posterior distributions contained a single unique value. This is inadequate

for reliable inference, and we give these parameter point estimates in Table 4.2.

Parameter Pointestimates MCMC benchmark

bo —0.00179 0.0738
by —0.309 0.234
by 0.236 —0.328
o 0.149 0.117

Table 4.2: 1955-2015: Comparison of BF and MCMC parameter point estimates.

With the exception of o, these values starkly contrast with the posterior estimates given
by our MCMC analysis. On top of this, also note the gradual divergence of the quantiles
in Figure 4.3. This implies an increasing level of uncertainty in our population estimates,

which also testifies to the unsuitability of these parameters.

42

The most probable explanation for this outcome is quite intuitive. For some period the
particle corresponding to these parameter point estimates may have described the data very
well. However, this led to gaining a very high weight and quickly dominating the particle
swarm. The effect of this was that later on, when it became unsuitable, no other particles
were left surviving to take its place. Consequently, as time went on more and more popula-
tion estimates grew further from the true value, creating the wider quantiles we see.

What we have seen here is the bootstrap filter struggling to cope with the added dimen-
sionality inherent in estimating multiple quantities, resulting in particle depletion and poor
inference. In order to overcome this problem we must adapt and use a more sophisticated

approach, creating what is known in the literature as an auxillary particle filter [3].

43

Your time will come. You will face the same Evil, and

you will defeat it.”

‘Arwen’, The Fellowship of the Ring

Auxillary Particle Filters

THE TERM AUXILLARY PARTICLE FILTER (APF) describes a variety of SMC algorithms
which represent novel solutions to the problem of particle depletion. In this chapter we
focus on the work of J. Liu and M. West in [3]. To start, we draw from [3] to give a brief
survey of the theoretical foundations. Next, to assess performance, we fit the Redhead pop-
ulation model over the two time frames for a variety of initial configurations of the APF.
The following APF is derived from two key adaptations of the bootstrap filter. First of
all, we look at a process known as artificial evolution. This method attempts to combat par-

ticle depletion by manually diversifying the sample of parameters at each time step. This

44

is referred to as §ittering’ the parameter values. Naive attempts at this result in a loss of in-
formation and increased variability in our results. However, a more sophisticated approach
found in [3] suggests we can carefully synthesise a method known as kernel smoothing
with artificial evolution to prevent this.

Secondly, we look at an additional sampling step which we refer to as deterministic pro-
Jjection resampling. For this, we take each particle and look ahead to try and assess the degree
to which it will ‘agree’ with future data, and then weight accordingly. This is achieved by
evaluating each particle in a deterministic version of the process equation. In our model,
this is created by fixing the V' (0, 1) random variable Z; to be zero.

In the first section of this chapter we discuss the first of these adaptations.

5.1 PARAMETER DIVERSIFICATION

5.1.1 ARTIFICIAL EVOLUTION

Artificial evolution is the process of jittering parameter values in order to create diversity in
the particle swarm, and thus avoid particle depletion. Recall that in this context the parti-
cles are a vector containing both population and parameter estimates. The process of jit-
tering can be achieved by extending the process equation to act on the parameters. After
which, we can run the algorithm as usual. For example, we might allow the process equa-
tion to act on the parameters by adding a zero mean normal random deviate to each. If we
denote the portion of the particle vector corresponding to the parameters as 8;, then we

write this process as

01 =0+, (5.1)

45

where

Yy ~ N0, Wiy) (5.2)

for some variance matrix W 1, the choice of which will be central in our later discussion.
The inherent problem in this method is that the posterior estimates grow more and more
diffuse, this is due to a ‘loss of information’ caused by treating fixed parameters as variable
over time [3]. Of course, this is undesirable, and so now we’ll take a look at kernel smooth-
ing with shrinkage. We’ll see this can be done in such a way to prevent over dispersion yet

still incorporate a form of artificial evolution.

5.1.2 KERNEL SMOOTHING AND SHRINKAGE

Suppose at time ¢ we have a particle swarm of vectors wii). Further, denote the subvector
of each particle corresponding to the parameters by 9?). With kernel smoothing we wish
to modify this sample to try and reduce noise and better approximate the posterior dis-
tribution. We do this by replacing the posterior sample with one drawn from a weighted
summation of appropriately chosen normal kernels (known as a mixrture). Much of our
discussion will be on how to choose the mean and variance of these kernels, though first we
describe the above formally.

Using notation similiar to before, let us denote the posterior distribution at time ¢ by

P(6¢|Y0:¢). Then, supposing we have N particles, we assume

=z

1

P(Beilyor) = 5 D N (Ora|my” h*V), (53)

=1

where N (:|m, S) is a multivariate normal distribution with mean 1m and variance matrix

S,and h > 0is the ‘smoothing parameter’ [3]. Later on, we’ll see how to specify these
variables appropriately.

An appropiate choice of V4 is the sample variance, however, choosing mgi) is more in-
volved. A natural choice of m,gi) might be to take mgi) = 9,@ [3]. However, if we calculate
the variance of the above mixture in this case we get (1 + h?)V; [3]. Unfortunately, this is
larger than V; forall b > 0. Thus, the resulting mixture is will be too diffuse [3]. However,
in [3] itis claimed that ‘shrinkage’ of the kernel locations mgi) will fix this problem. In fact,
this approach dates back to earlier work of West [21]. Simply put, we shift the kernel loca-

tions a small amount towards the sample mean. This has the effect of reducing the mixtures

variance slightly so that is equal to V';. Mathematically, this is done by defining 1, to be
m = a0 + (1-a)8"”, (5.4)

where a = /1 — hZ2. Furthermore, mgi) is referred to as the prior point estimate of 0?)
(3].

Next, we see how a better form of artificial evolution can naturally embed in this frame-
work and is ultimately reflected in a form similar to the above. Observe that we can rewrite

the process of artificial evolution in a kernel mixture form as

N
1 i
P(Orsalyon) = 5 D N(0,11167", W), (55)
=1

Hence, at time ¢, we would sample new parameter values from the multivariate normal
mixture. Itis clear that each individual component of the mixture simulates the process 5.1,

and hence there is an equivalence between these methods. However, this equivalence sim-

47

ply leads to the same problem of over dispersion. Thus, we need to incorporate the changes
related to our earlier discussion.

In additional to location shrinkage, it is proved in [3] that we must introduce negative
correlations correlations between 0, and the added noise implied by the method. In plain
english, this means that as ¢ increases, we wish to decrease the added noise. This informs
our choice of h for equation 5.1.2. West and Liu show that this can be achieved with a stan-
dard technique by setting

1
Wi = Vi+1(5 —1) (5.6)

where 0 is known as the discount factor [3].

In the context of SMC, we are interested in p(9§21 \Bgi)), which tells us how to update
the parameters for particles at each time step. West and Liu show in [3], by utilising loca-
tion shrinkage and the negative correlation described above, that p(@i?l |9£i)) dramatically

reduces to a familiar form given by 5.1.2. Specifically, we get

p(0:41716.9) ~ N(6), [m, 17V), (57)
with mgi) = aegi) + (1 - a)gii), a= 3‘;—51 and h = v/1 — a®. We emphasize that if each
parameter is updated in this way, there is an immediate correspondence with our original

kernel mixture

N
1 i
P(Beilyor) = 5 D N(Ora|my h*V),

i=1
for the particular case where h is specified as above. Thus, we have an effective synthesis of
kernel smoothing and artificial evolution.

Notice that the choice of discount factor determines both a and h. In our analysis, we

48

typically use a discount factor of 0.994, which results in very little jittering. However in the
next chapter we suggest a method for varying this discount factor according to the current
state of the particle swarm.

We conclude this section by discussing the error inherent in this process. Despite miti-
gating the ‘loss of information’ described in [3], we must recognise that when we alter the
parameter values they no longer truthfully correspond to the trajectory to which they are
attached. Thus, the weight associated to them by their prevalence in the particle swarm is
now but an approximate measure of their suitability. Furthermore, this error will accumu-
late each time step. However, due to the scale of jittering used, in most instances the effect
will be minor. The reader should observe that for each application there will be a balance
between the error incurred and the improved accuracy due to the prevention of particle

depletion.

5.2 DETERMINISTIC PROJECTION RESAMPLING

Deterministic projection resampling is an additional resampling process devised by Pitt and
Shephard in 1999 [22] and is the original defining step of an ‘auxiliary particle filter’. Sup-
pose we are trying to construct an approximation to the posterior at time ¢ 4 1 from our
current particle swarm. With this mode of particle filtering we first sample particles with
probability relating their predicted future fit to the data. To achieve this in our implemen-
tation, we first alter the stochastic process equation to be

k

Ny = Nierexp (bo +) bilNes), (58)

=1

49

thus removing the random component and making it deterministic. Then, we weight the
projected value (which known as a prior point estimate) in a way similar to before - we sim-
ply calculate the likelihood based on the observation process model as seen in our imple-
mentation in Chapter 4. It is important to see that in general, the above can be seen as set-
ting the prior point estimate to be the expectation of xgl given xgi) and H,Ei).

The aim of this step is to try and maintain a larger number of particles which will have a
significant weight in the next stage. In particular, this makes single anomalous data point
have a reduced impact, since such a particle will significantly deviate from subsequent ob-
servations by definition.

Furthermore, we require a slight modification to the original resampling step to account
for this change. We take a similar approach to the bootstrap filter, but we use a normalised
version of the weights

0 (Y1 |$§21)

)y = DAL (59)
P(Yes1 |PJ£J21)

where ugl denotes the prior point estimate of xﬁl This choice of weight considers the
amount of improvement the stochastic element of the process equation provided. In short,
in this second resampling stage we favour the particles which improved relative to their
prior point estimate.

We’ve now introduced the necessary theory for the next section, where we present a full

description of the APF.

5.3 THE ALGORITHM

First we present a general step by step version of the APF given in [3]. However, have mod-

ified and expanded their exposition throughout, particularly to clarify the initialisation

50

phase. Subsequently, we’ll explain how to adapt this for the Redhead case, before moving
on to the real implementation in R. In the following a particle contains a the trajectory and
a set of parameters. We denote the population estimates of a particle vector by xgi) and the

parameter subvector as 0,

Step I: Initialisation

* Sett = 0.

* Set N € N to be the desired number of particles.

* SetT" € N to be the desired number of time steps.

* Setd € (0, 1] to be the desired discount factor.
35—1

* Seta:T

« Seth =+v1—a?

)

* Fori=1,...,N, samplef(()i ~ p(xg).

Step 2: Prior point estimates

* Fort =1, ..., N calculate and store M§21 = E(xpy1]|ze, 09).

+ Calculate and store the vector

1 N
0 _ (4)
et—N;Bt

corresponding to the sample mean of the parameter estimates.

* Fori =1, ..., N calculate and store mgi) = aey) + (1 —a)8,.

51

Step 3: Deterministic projection resampling

* Fori=1,..., N, assign mﬁl the importance weight

o Pry|pt),, m"),

equal to the probability of observing v, given population estimate ugl and

()
parameters 1M, .

* Fori =1, ..., N, normalise the weights by setting

(@)
() Wy
RS)]
Zj:l ng)

* Construct a set S by resampling with replacement N integers from the set
{1, ..., N} such that
Pr(S[i] = j) = wy”
fort =1,...,N.
* Fort=1,..., N set

Step 3: Kernel smoothing and shrinkage

* Compute the variance matrix for the sample of parameters and store itas V.
* Fori =1, ..., N sample a vector ¢ from N(-|m§i), h*V';) and set
0&21 — @

52

Step 4: Importance sampling step

* Fori=1,..., N, sample fgi) ~ p(xt|zl:§?1).
(

* Fori =1, ..., N, assign ftl) the importance weight

) P (1)
m(tz) - (Y ’ﬁi))
Pr(y|m”)

* Fori =1, ..., N, normalize the weights by setting

Step 5: Selection step

* Construct a set S by resampling with replacement N integers from the set

{1, ..., N} such that

fori =1,...,N.

* Fort=1,..., N set

2 7S

* Ift = T then stop. Else, sett <— ¢ 4 1 and return to step 2.

In order to make this algorithm suitable for the Redhead, we make almost identical adap-
tations as to the bootstrap filter case. We recall the main points. First, we first let the popu-

lation size IV take on the role of ;. Furthermore, due to our use of a second-order density

53

)

dependant model, it is necessary to use priors to simulate the particles atboth ¢ = 0and
t = 1 during the initialisation phase. Also, we need the system process equation above
needs to reflect the fact we are now working with a second-order Markov process, and so
p(xf) |$§Z_)1) becomes p(V| Nt(i)l, Nt(i)Q). Of course, likelihoods are computed similarly via
the observation process model as described in Chapter 4.

We’re now ready to move on to the next section and present one of the major parts of

this thesis; a translation of the above description in to a working implementation in R.

5.4 IMPLEMENTATION

The following gives an implementation of the auxiliary particle filter described above. In
this example we aim to estimate the yearly population size of the Redhead population be-
tween 1961 and 2002, as well as obtaining parameter posterior distributions for the second-
order density dependance model. This time period gives comparability with the parameter
estimates of Jamieson and Brooks in [1], while later on we shall discuss the results of an im-
plementation using the full data set available and compare with our corresponding MCMC
analysis. As in Chapter 4, population data along with standard errors were provided by the
USFWS report [6] discussed in Chapter 1. In addition, all parameters were given priors sim-
ilar to previous analysis, as stated in table 2.1. The following was run in RStudio [20], on

an intel dual core 2.7 GHz processor.

Load data and packages
library(XLConnect)

library(MASS)

;| data.input <— readWorksheetFromFile("duckdata.xlsx",sheet=1)

54

10

20

21

22

23

25

26

duck.N <— data.input[1:61,16]/1000

duck.SE <— data.input[1:61,17]/1000

Model parameters
k <— 2

Filter parameters

number <— 10000

endtime <— 61

dfactor <— 0.994

a <— (3*dfactor — 1)/(2*dfactor)
h <— (1-ar2)70.5

reps <— number

Storage for particle swarm and model parameters
swarm <— matrix(NA, number, endtime)

par <— matrix(NA, number, 2+k)

Population priors

for(t in 1:k){swarm[, t] <— rnorm(Cnumber, duck.N[t], duck.SE[t])}

Parameter priors

par[,1] <— rnorm(Cnumber, @, 1)

55

28

29

36

39

40

41

42

43

44

46

48

49

par[,2] < rnorm(Cnumber, @, 1)

par[,3] <— rnorm(number, @, 1)

Equivalent to IG(0.001,0.001) and truncated to plausible values

par[,4] <— sqrt(exp(runif(number, —10, 2)))

The process model
model .nextyear <— function(swarm2, params, num){
hidden <— swarm2[, 2]*exp(params[,1] + (params[,2]*swarm2[,2])+(
params[,31*swarm2[,1]) + params[, 4]*rnormCnum,@,1))

returnChidden)

Function to compute weights via likelihood

weights.L <— function(swarml, time, data.N, data.SE){
weights <— dnorm(data.N[time], swarml, data.SE[time])
weights <— weights/(sum(weights))

return(weights)

weights.quo <— function(swarml, mu.t, time, data.N, data.SE){
wl <— dnorm(data.N[time], swarml, data.SE[time])

w2 <— dnorm(data.N[time], mu.t, data.SE[time])

56

5C

5

52

60

68

69

3

N

weights <— wl/w2
weights <— weights/sum(weights)

return(weights)

s | ### Prior point estimates
;lppe.mu <— function(swarm2, params){

mu <— swarm2[, 2]*exp(params[,1] + (params[,2]*swarm2[,2])+(

params[,3]*swarm2[,1]))

return(mu)

ppe.mt <— function(params, A){
mt <— A*params
for(i in 1l:dim(params)[2]1){
mt[,i] <— mt[,i] + (A—A)*mean(params[,i])
}

return(mt)

Parameter kernel smoothing with shrinkage
par.update <— function(params, MT, H, num){

par.new <— matrix(NA, num, dim(params)[2])

57

72

76

-

°

8

8

82

84

86

89

90

91

92

23

v <— HAZ*var(params)

for(i in 1l:num){

par.new[i,] <— mvrnorm(1l, MT[i,], V)

}

return(par.new)

Filter loop
if(endtime > 2){

for(t in 3:endtime){

Step 1: Prior point estimates

mu <— ppe.mu(swarm[,(t—2):(t—1)], par)

mt <— ppe.mt(par, a)

Step 2: Sample via auxillary integers
wt <— weights.L(mu, t, duck.N, duck.SE)

g <— sample(1l:number, reps, replace=TRUE, prob=wt)

swarm <— swarm[g, |
par <— par[g,]
mu <— mul[g]

mt <— mt[g,]

Step 3: Update parameters

58

95

96

98

99

100

101

102

104

105

106

par <— par.update(par, mt, h, reps)

Step 4: Sample via system process

swarm[, t] <— model.nextyear(swarm[, (t—2):(t—1)], par, number)

Step 5: Resample to simulate final weighting and adjust
parameter order

wt <— weights.quo(swarm[,t], mu, t, duck.N, duck.SE)

smp <— sample(l:reps, reps, replace=TRUE, prob=wt)

swarm <— swarm[smp,]

par <— par[smp,]

1955-2015: APF implementation for combined parameter and population estimation.

5.5 RESULTS AND PERFORMANCE

The primary aim of this section is to judge and discuss the performance of the above imple-
mentation over the timeframes 1961-2002 and 1955-2015. For each time frame we will first
discuss the output relative to the corresponding MCMC benchmark, and then compare the
performance of the APF with the bootstrap filter. To conclude, we present a brief analysis

of the runtimes for varying initial configurations of the bootstrap filter and APF.

59

5.51 1961-2002: RESULTS

In the first instance we ran simulations with N = 10%, which is 2 modest number of par-
ticles and allows for a relatively rapid analysis. Furthermore, through experimentation we
found the discount factor § = 0.994 to be effective, and so it is used throughout unless
otherwise stated. This represents a fairly small amount of jittering in the context of the
range of values suggested in [3]. To begin, we consider the population estimates given by

Figure 5.1.

data

14

O estimates

- - quantiles

1.2

1.0

Population Size (in millions)
0.6
|

0.4

1961 1971 1981 1991 2001

Year

Figure 5.1: 1961-2002: APF population estimates for N = 10%.

In figure 5.1 we witness a slight narrowing of the quantiles in the early years, which is
suggestive of mild particle depletion. This is a less extreme example of what we saw in
Chapter 4, where the quantiles had shrunk down to a point. However, in general the pop-
ulation estimates appear to be show a reasonable trajectory and there is no noticeable sign

of a divergence in the quantiles as we saw before in the failed bootstrap case. The real test

60

of this first atctempt will be to see how accurately we estimated the parameter values in com-

parison to the MCMC benchmark given in [1].

Parameter Benchmark Posterior mean Posterior mode 2.5% quantile 97.5% quantile

bo 0.194 0.179 0.164 0.0802 0.327
by 0.358 0.501 0.594 —0.685 1.06
) —0.652 —0.790 —0.863 —1.327 0.137
o 0.078 0.0840 0.069 0.0457 0.135

Table 5.1: 1961-2002: APF parameter posterior summaries for N = 10, 000.

The estimates given by table 5.1 are surprisingly accurate, particularly by and o which
approximately deviate by approximately 1073 from the benchmark value. The other pa-
rameters deviate slightly more, though the overall shape, which we discuss in Chapter 2,
is similar. We’ll summarise the errors shortly, but before that we consider what can learnt
from the posterior density plots.

The density plots given in figure 5.2 provide further evidence that the particle swarm is
reasonably healthy - the quantiles are not too narrow to indicate particle depletion, and yet
not so diffuse that precision suffers. Important qualities to observe are that each posterior
is unimodal and does not show significant signs of skewness. Thus, in this case either the
mean or mode given in table 5.1 would be reasonable point estimates.

In summary, given the size of the particle swarm the algorithm has performed surpris-
ingly well, and it appears the amount of diversity generated with § = 0.994 was sufficient
to prevent particle depletion. However, in order to see if it was possible to achieve signifi-

cantly better accuracy, next we consider a longer runtime with N = 2 X 106,

61

b0 Posterior Distribution

—
Z e
i
3 <
a
~ -
o -
T T T T T T
0.0 0.1 0.2 0.3 04 0.5
N =10000 Bandwidth = 0.006564
b2 Posterior Distribution
o
2 o
2 -
@
a g -
o A\-"“_._/\
o T T T T T
-1.5 -1.0 -0.5 0.0 0.5

N = 10000 Bandwidth = 0.03949

W
-
= 2
i
=
L o
=
=
=]
=
=]
=
@
0 s
=1

Figure 5.2: 1961-2002: APF paramater posterior densities for [NV

b1 Posterior Distribution

- T T T T T T
-1.0 0.5 0.0 0.5 1.0 1.5

N = 10000 Bandwidth = 0.03741
sigma Posterior Distribution

T T T T T T

-0.10 -0.05 0.00 0.05 0.10 0.15

N =10000 Bandwidth = 0.003367

=10%

o data
= _
- o estimates
—
2 o |- quanties
2 — |
E
£ =
= 2
©
N
2 o
5 o
8
o
2 ©
& o 7
o
=]
o

1981

Year

Figure 5.3: 1961-2002: APF population estimates for N = 2 x 106.

62

As we would expect, the population estimates in figure 5.3 represent an improvement,
with quantiles that are fairly uniformly distributed about the trajectory. However, our
main interest is parameters estimation, and in the following table we compare the poste-

rior summaries with the MCMC benchmark.

Parameter Benchmark Posterior mean Posterior mode 2.5% quantile 97.5% quantile

bo 0.194 0.196 0.185 0.043 0.376
by 0.358 0.343 0.304 —0.590 1.155
ba —0.652 —0.647 —0.673 —1.413 0.199
o 0.078 0.044 0.095 —0.151 0.167

Table 5.2: 1961-2002: APF parameter posterior summaries for N = 2 x 106 with the MCMC benchmark from [1]
(3.s.f).

For by, by and by we have a noticeable improvement in the accuracy of the estimation
compared with the case with N = 10%. Interestingly, the posterior mean for o diverged
turther from the benchmark of approximately 0.078. The reason for this is clear when we
take a look at the density plots in figure 5.4.

In figure 5.4, we see that the posterior for o is bimodal and contradicts the condition
o € RY from model 1.2.2. Given that o has a strictly positive prior, we conclude kernel
smoothing must be the cause of this phenomenon. This occurrence is logical when we con-
sider the role of ¢ in the system process. Recall that o is the coefficient of Z;, a2 N (0, 1)
random variable. Thus, since Z; is centred around zero, the sign of o does not effect the ex-
pected value of the product. Indeed, the distribution we’re seeing supports this reasoning,
since the mode of each ‘hill” has approximately the same absolute value. What remains to

be explained is why the peak to the left has a significantly lower maximum density. This is

63

b0 Posterior Distribution b1 Posterior Distribution

. 4
= =
g2 z 3
8 ~ &
- S o 41
© T T T T T = T T T T T T T
-0.2 0.0 0.2 0.4 0.6 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
N = 2000000 Bandwidth = 0.003859 N = 2000000 Bandwidth = 0.02374
b2 Posterior Distribution sigma Posterior Distribution
a o 4
= =
z2 3 Z =
@& 4]
a N [= B J\
(=] .
o o - —

T T T T T T T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -0.2 -0.1 0.0 01 0.2 0.3

N = 2000000 Bandwidth = 0.02214 N = 2000000 Bandwidth = 0.004674

Figure 5.4: 1961-2002: APF parameter posterior densities for N = 2 x 106.

due to the strictly positive prior for o, and thus, given the small amount of jittering used
there is a small probability of negative values being generated. Therefore, we would ex-
pect the majority of particles to be in the vicinity of the positive mode. It is likely that this
phenomenon was not observed in the previous case because the small number of particles
meant that is was less likely jittering would generate appropriate negative values.

By the above argument, and the definition of model 1.2.2, we believe that it is justified to
discount the negative portion of the density for sigma when constructing point estimates,
since this is distorting the calculation of the mean. Thus, we revise our point estimate of o
to be the mean of the positive portion of the density, which is equal to 0.0969 (3.s.f).

Before moving on, we give a summary of the above results and detail the error for each

case.

64

APF Magnitude of error
Parameter Benchmark

N=10* N=2x105| N=10* N =2x10

bo 0.194 0.179 0.196 0.0146 0.0174
by 0.358 0.501 0.343 0.143 0.0155
by —0.652 —0.790 —0.647 0.138 0.00524
o 0.0775 0.0840 0.0969 0.00650 0.0194

Table 5.3: Summary of APF point estimates and corresponding errors relative to MCMC benchmark over 1961-2002
(3s.f).

To conclude this section we wish to compare the bootstrap filter with the APF to see
whether the additional complexity of the APF is justified. Similarly to before, we first con-

sider the case with N = 10%.

Parameter Benchmark BF APF
bo 0.194 0.357 0.179
by 0.358 —0.245 0.501
by —-0.652 —0.303 —0.790
o 0.0775 0.110 —0.0840

Table 5.4: (1961-2002) Comparison of MCMC benchmark, APF and bootstrap filter point estimates with N = 104
(3.s.f).

In this instance we have illustrated the substantial benefit of using the APF over the
bootstrap filter. The results from the APF preserve the shape of the parameters that we

expect for the ecological reasons discussed in chapter 2. In addition, the overall error is sig-

65

nificantly reduced and within a reasonable range given the number of particles. Next, we

make the comparison when N = 2 x 106,

Parameter Benchmark BF APF

bo 0.194 0.208 0.196
by 0.358 0.206 0.343
) —0.652 —0.528 —0.647
o 0.0775 0.0986 0.0969

Table 5.5: (1961-2002) Comparison of MCMC, APF and bootstrap filter point estimates with N = 2 x 10° (3.s.).

This test witnesses a further improvement for both methods, particularly for the boot-
strap filter. For the bootstrap filter, we now see the correct pattern emerging, and it appears
that particle depletion has not occurred. Indeed, on checking the number of unique par-
ticles remaining we found over 1000 - a reasonable sample size despite the considerable
reduction from the starting 2 X 106 particles. Given particle depletion did not occur, is is
natural to question why APF yielded better results. We conjecture that the reason for this
is that the small amount of jittering implied by § = 0.994 allowed the parameter values to
converge to their ‘true’ value by creating just enough diversity for a small amount of Dar-
winian evolution to occur. We refer to this in subsequent discussions as the ‘local optimisa-
tion’ provided by kernel smoothing. However, there is a fine balance to be observed here,

since using too much jittering results in an accumulation of error as described in 5.1.2.

66

5.5.2 1955-2015: RESULTS

Our objective is to briefly highlight the key differences we found over this extended time
frame. To conclude, we will lend the reader some insight on how to configure these algo-

rithms. First of all, we look at at population estimates generated with N = 10%.

data

14

O estimates a0

- - qguantiles

08 10 1.2

Population Size (in millions)
0.6

0.4

L L L5 I O O
1955 1965 1975 1985 1995 2005 2015

Year

Figure 5.5: 1955-2015: APF population estimates with N = 10%.

As you can see, this graph exhibits similar features to the initial bootstrap filter example.
In particular, recall that a narrowing of the quantiles in the early years signals that a small
number of particles are the ancestors of those that come after. It is important to see that
this form of degeneracy, which we call ancestral depletion, is inevitable as time passes, since
at each time-step there is a finite probability that one of original N lineages of particles will
become extinct. However, recognising this clarifies the purpose of kernel smoothing - it
exists to manually create diversity in spite of ancestral homogeneity. Moving on, we see

evidence that, despite the advantages of this added diversity, there remain limitations to the

67

APF. The next table illustrates this with a comparison of the APF point estimates with the

corresponding MCMC benchmark from chapter 2, table 2.1.

Parameter Benchmark Posterior mean Posterior mode 2.5% quantile 97.5% quantile

bo 0.0738 0.143 0.132 0.125 0.172
by 0.234 0.429 0.460 0.176 0.591
ba —0.328 —0.665 —0.716 —0.808 —0.449
o 0.117 0.103 0.0962 0.0829 0.132

Table 5.6: 1955-2015: APF parameter posterior summaries for N = 10* with MCMC benchmark (3.s.f).

From this table we learn that while the MCMC algorithm managed to find a fit of the
model radically different from previous time frame, the APF struggled to deviate signif-
icantly from the previous estimates. Under the assumptions that the MCMC results are
valid and that the 5 year discrepancy in start time had a minor effect, then we offer is a sim-
ple explanation for this.

First of all, observe that the densities in figure 5.2 are quite dense, which suggests the pos-
teriors in this case at the time step corresponding to 2002 would be similar. Then, the sig-
nificant shift in posterior required to match the MCMC analysis would be challenging for
this method, since convergence would be slow due to the small amount of jittering implied
by = 0.994 and the absence of many particles in the target area. However, should the few
remaining particles in the area represent a huge increase in likelihood with respect to the
new data then it is possible convergence would be more rapid - though it appears that this
was not the case for this instance.

The above has served the purpose of giving us insight in to the workings and limitations

of the algorithm, but should not be viewed as damning evidence for the APF in general.

68

Indeed, the shift in parameter estimates is largely due to the inadequacy of our model, due
to the over simplicity that we discuss in section 4.4.1. This gives a somewhat unfair playing
field for the APF, since our application here is optimised to estimate true and fixed param-
eters. Thus, this situation is not ideal since the MCMC analysis suggests that significantly
different sets of parameters may provide the best fit for different time periods.

In the last part of this section, our focus will be to see to what extent available computa-
tional power must be increased in order to overcome the rigidity discussed above and match
the estimates given by MCMC for the extended time frame. By starting with a greater num-
ber of particles, we hope we’ll obtain increased variance at later stages and thus reduce the
degree of ancestral depletion. This will allow for greater flexibility, since the population
of particles in the vicinity of the new MCMC benchmark will likely be larger. In the fol-
lowing, we also consider alternative choices of 0 to demonstrate the error caused by kernel
smoothing.

For brevity and to aid comparison, the following table gives a collation of the MCMC

benchmark and APF posterior means obtained with a variety of starting configurations.

N =2 x 106 N =4 x 10
Parameter Benchmark

0=0.994 6=0.9999 | 6 =0.994 4 =0.9999

bo 0.0738 0.0603 0.0922 0.0786 0.0601
b1 0.234 0.440 0.177 0.331 0.236
by —0.328 —0.523 —0.293 —0.438 —0.323
o 0.117 0.0861 0.122 0.100 0.119

Table 5.7: 1955-2015: APF parameter posterior means with a variety of starting configurations.

69

In table 5.7 we witness a trend of increased accuracy as we progress through the config-
urations from left to right. The case with N = 4 x 10°and § = 0.9999 is unique in
giving results of similar precision to the best of the shorter time frame. This gives a concrete
demonstration of discussion given in 5.1.2. That s, a positive correlation between an in-
creased discount factor and reduced error is seen when particle swarm sizes are large enough
to prevent significant particle depletion. In particular, it is interesting to observe that in the
shorter time-frame the choice § = 0.994 yielded very accurate results whereas here we re-
quired a value significantly closer to 1. Finally, we observe these results demonstrate that
the error caused by kernel smoothing accumulates over time.

Next, we discuss if, for instances with N = 4 x 109, it is beneficial to use the APF over

the simpler bootstrap filter. Our comparison is summarised in table 5.8.

Parameter Benchmark BF APF

bo 0.0783 0.0590 0.0601
b1 0.234 0.231 0.236
by —0.328 —0.303 —0.323
o 0.117 0.118 0.119

Table 5.8: 1955-2015: APF (& = 0.9999) and bootstrap filter posterior means with N = 4 x 106.

Table 5.8 illustrates an almost negligible improvement in all parameters except by. Thus,
given by the added complexity of the APF, certainly is not sufficient to justify the added
runtime (of approximately 4 hours) for most applications. Thus, the practitioner of these
methods is presented with a challenging optimisation problem to determine the correct IV,

0 and method which minimises error while avoiding particle depletion. However, there is

70

an added dimension of complexity, since the naive approach which seeks to find the min-
imum value of § which avoids particle depletion may not be best. This is due to the local
optimisation that kernel smoothing provides, which we demonstrated above. This prob-
lem naturally motivates an enhancement we’ll discuss in chapter in chapter 6, where we
consider modifying 0 in real-time in accordance to an appropriate diagnostic.

To conclude, the reader should recognise that the complexity of this situation demands
at the current stage the choice of NV and d cannot be determined soley by general principles.
However, the three key considerations of bias, local optimisation and particle depletion can
inform an efficient experimentation to choose an appropiate configuration. To further ac-
cellerate this process for the reader, the next section briefly details the relationship between

the runtimes for the different instances.

5.5.3 RUNTIME PERFORMANCE

The following table should serve as a reference point when the reader is attempting to con-
figure her implementation with respect to her situational time constraints. Of course, the
specifics of the model must also be taken in to account, so these serve only a very rough
guideline. It is assumed ¢ has negligible impact on runtime, and thus we focus on the choice
of N and method used. In addition, it is clear from the sequential structure of the algo-
rithm that the runtime is approximately linear with respect to the number of time steps.
Thus, in the interests of simplicity, we give runtimes for 1955-1966 which includes 10 pro-
jective steps (since the first two years of data act as priors). In addition, we include results

for the bootstrap filter for comparison.

71

Method N=10* N=10° N=105 N=2x105 N =4x 10

APF 7 64 706 1333 2772
BF 0.2 1 17 32 74

Table 5.9: Comparison of runtimes (in seconds) for the APF and BF over 10 projective steps.

To conclude this chapter we note the two main inferences to be made here. First, the
runtime for each algorithm is approximately linear with respect to IV, as would be expected.
It is reasonable to take this as a general result on principle, though note that for exception-
ally large N memory availability may need to be considered. Secondly, in this instance we
see the APF runtimes to be increased by approximately a factor of 6 in comparison to the
bootstrap filter. This will vary considerably in different contexts, but illustrates the signif-
icant increase in computation required by the APF. However, the reader should note that
the runtime of the APF may significantly reduce if another programming language was
used. For example, the multivariate sampling process in the APF would be dramatically

faster if implemented in a language such as C.

72

‘He’s holding a thermal detonator!

C-3PO, Return of the Jedi

Enhancements and Optimisation

THERE ARE A MULTITUDE OF WAYS we might improve the APF presented in chapter 5.
Recent years have witnessed continuous incremental progress and the author believes the
scope for improvement likely remains significant. In this chapter we tentatively outline
blueprints for a few untested improvements. We hope to inspire the reader to experiment
and investigate these methods further.

To begin, we develop a natural diagnostic based on effective sample size. Our aim is to
measure the degree of particle depletion at a given time. This will enable us to suggest an

enhancement to address the optimisation problem inherent in configuring the parameters,

73

as discussed in section 5.5.2.

6.1 SWARM DIAGNOSTICS

Our first diagnostic is derived from a standard statistical concept mentioned in chapter 4,
the effective sample size (ESS). The use of ESS in importance sampling techniques at least
dates back to 21992 report by A. Kong [23]. However, in practice the implementation of
ESS is not an exact science, and in subsequent years various methods of calculation have
been used. [24] gives a discussion of different choices, and asserts that the most common

approximation to the theoretical value described in [23] to be

or o L — (6.1)

A\ 2
(")
i=1

1=

where wgi) is a normalised weight at time ¢. With this approximation we see that if a single
particle has weight approaching unity then the ESS will be close to 1, whereas a sequence of
uniform weights result in an ESS close to IV, as intended.

However, it is important to note the use of ESS originates as an indication of when to
resample for SIS methods which resample parsimoniously. Indeed, the above does not im-
mediately synthesise well with the intensive resampling methods presented here - since the
resampling process results in a set of uniform weights. To elaborate, recall that particle de-
pletion in methods which resample at each step creates a particle swarm consisting of only
multiple copies of a single particle. In this case, the ESS would be found to be [V, since we

would expect each to have the same weight.

Despite this, the ESS can be of value. Essentially the above implies the ESS will be of lim-

74

ited value once particle depletion has already occurred. However, during the initial steps
before too much resampling has occurred the ESS will approximately perform as intended.
At later stages, we will be limited to only the can detection of rapid particle depletion over a
single time-period.

However, we suggest here a more effective approach based on the ESS. For the bootstrap
filter case we might be inclined be to compute the number of unique parameter values in
the current swarm. Though, for the APF an enumeration of unique values will not be ef-
fective, since the mutation caused by kernel smoothing prevents a single value dominating
the swarm. Instead, particle depletion in this context is characterised by an overly dense
posterior sample.

We instead look at approach which exploits the idea of ‘ancestors’ and ‘descendants’ as
first discussed in section 3.4. Recall from chapter 4, that the ancestor of a particle can easily
be identified if we assign each particle at ¢ = 0 alabel from 1, ..., N which can be preserved
throughout the resampling process. Our strategy is to then consider the ESS formula with
weights that correspond to the proportion of particles from each ancestor in the swarm. It
is important to note that identifying the abundance of each ancestor is a simple counting
process, and is less computationally intensive than enumerating the unique values from an
arbitrary set of numbers. In short, this is because the ser of possible label values is known in
advance.

Therefore, we present the following algorithm, which computes an analogue of the ESS

at time ¢, with the assumption that at ¢ = 0 we set

1z i (6.2)

75

fori = 1,..., N, where N is the number of particles and (wgi)) denotes the label of ances-
cor),

Step I Initialise a zero vector C' of length V.

Step 2: Fori=1,...,Ndo

Cli(z)] « O] + 1 (6.3)
Step 3: Fori=1,..., N set
Cli] — %cm (6.4)
Step 4: Return
o (65)

S (Cl)

This algorithm assigns a weight to each ancestral particle corresponding to the propor-
tion proportion of its ‘descendants’ in the current sample. We then normalise these weights
in Step 3, which prepares us to apply the standard ESS formula 6.1 in Step 4. To the authors
knowledge this method does not exist in current literature, and we refer to this diagnostic

as the ancestral effective sample size (AESS). In general, at time ¢ we can formally define the

AESS of a particle sample X}, denoted by N4(X;), to be

1 N?

Na(Xi) = 2 N
<\I]i;\> z:Zl | D, |2

(6.6)

i=1

where D is the set of descendants of the particle at ¢ = 0 labelled <.

In the next section we make use of this diagnostic to address the optimisation problem

discussed in section 5.5.2.

6.2 ADAPTIVE SHRINKAGE

In chapter 5 we saw the considerable impact ¢ has on performance. The purpose of this sec-
tion is to address the optimisation problem inherent in determining d given N by propos-
ing an automated procedure that determines d automatically.

Our results were consistent with the argument that as IV increases d should approach,
but not reach, one. However, it was also demonstrated that even for sample sizes sufficient
for the bootstrap filter to function effectively, the local optimisation provided by a minute
amount of jittering’ may outweigh the corresponding error associated with kernel smooth-
ing. On the basis of these facts we suggest modifying the method of kernel smoothing given
in [2]. In particular, we propose two different approaches for varying the discount factor ¢
at each time step in accordance to the AESS diagnostic. The first is allows to depend on an
explicit function of the AESS, while the second suggests depend on the change of AESS
between time-steps.

The additional flexibility of this approach allows a single instance of the algorithm to
adapt as necessary to the current state of the swarm, from which we derive the term adap-
tive shrinkage. Simply put, if the swarm becomes overly homogeneous we allow a greater
degree of Yjittering’ than if if the AESS diagnostic suggests a diverse swarm.

We now discuss the first of our two methods, whereby ¢ is determined as a function of
the AESS. Further research is required to investigate an optimum choice of function, which

may well depend on context. One key factor to take in to consideration when choosing an

77

appropriate function is that the AESS values form a decreasing sequence that tends to 1 as
t — 00, as discussed in section 5.5.2. In light of this, we suggest the following as a starting

point:

Na(Xe) = 1} e (6.7)

0=01—-¢) | /——
() [J\C4(;X}) + 1
where ¢ is some value between [0.95, 1). Before giving our justification for this choice, we

present a plot for clarification.

0.99
|

0.98
|

delta

0.96
|

0.95
|

0 10 20 30 40 50

AESS

Figure 6.1: A plot of the proposed relationship between the AESS and § with ¢ = 0.95.

The above illustrates that equation 6.7 gives a range of ¢ values in [c, 1) which can triv-
ially be verified analytically. The lower bound for the range of values we suggest for ¢ was
motivated by [3], in which West and Liu suggest ¢ typically should lie in the region [0.95, 0.99].
As previously noted, since the AESS tends to 1 then it immediately follows that under

this function — c. Thus, we recommend ¢ be equal to what the value of § one would

78

use in the standard APF, for example, we would take ¢ = 0.994 in the context of our ear-
lier analysis. Such a choice causes this framework to behave asymptotically similar to the
standard APF, but has an additional degree of optimisation since fjittering’, and thus bias, is
reduced when it is needed less in the earlier stages.

Furthermore, notice that we opted for a function with a strictly negative second-derivative.
This reflects the fact that the primary function of 0 is to prevent particle depletion, and this
gradient allows ¢ to respond quickly in the event that the AESS rapidly decreases to very
low levels. On the other hand, it is less sensitive for higher values when a shift is less impor-
tant.

Moving on, we’ll now consider a framework where we allow d to vary according to the
change in AESS between time ¢ — 1 and ¢. In this case, we opt for a linear relationship and

set
C1 — Cy

'=—%

[NA(Xt—1> — NA<Xt)] + Co, (68)

with ¢y, o € [0.95,1), ¢ > ¢1 and where X;_; and X; denote the particle swarm at
timest — 1and ¢ respectively. Recalling that N4 (X;—1) > Na(X;) this relationship
implies § € [c1, ¢2]. In this case, when the AESS tends to 1 then § — ¢4 since it is clear
that No(X;—1) — Na(X;) — 0. Furthermore, note that there are many options for ¢;
and ¢y and it is suggested the reader experiment to see what best suits her application while
keeping in mind the asymptotic behaviour of 6.8. To conclude, we suggest that while 6.8
only depends on the AESS for the current and previous time step, the reader may want

to consider creating a more sophisticated function which makes use of a larger subset of

previous AESS values.

79

6.3 A PARALLEL APPROACH WITH PRIOR PARTITIONING

In this section we tentatively suggest a new (to the author’s knowledge) method for com-
bined state and parameter estimation built on an easily parallelisable framework derived
from a partition of the parameter space. The use of a partition in this way has vague con-
ceptual links with the concept of of stratified sampling methods in SMC [25], which the
reader may wish to investigate. Our approach estimates the posterior distribution of a pa-
rameter through a weighted combination of a samples. In particular, each sample has a den-
sity which approximates the geometry of the posterior density over a distinct region of the
parameter space. On a cautionary note, we stress that the following is primarily intended as
inspiration for future experimentation, rather than immediate usage.

The motivation for this method is that particle depletion is the result of over dispersed
weights. This leads us to partition the parameter space and run separate instances of an
SMC algorithm in each. Then, under the assumption that a small deviations in parameter
values will cause a small deviations in projected states, we would expect less dispersion in
the normalised weights. This is because in each instance of the algorithm we’re only com-
paring the likelihood over a smaller range of state values. On a practical note, measures may
need to be taken to prevent underflow for regions of the parameter space with very low
likelihood.

In order to form the final posterior approximation we also include an additional weight-
ing stage, which scales the posterior sample densities returned from the separate instances
according to the relative likelihood of their regions. The advent of parallel computing dra-
matically increases the efficiency of this approach, since each instance can be run simultane-

ously.

80

We consider the case of estimating a single fixed parameter 3 of some arbitrary transi-
tion kernel. Further, we adopt the prior 5 ~ U(0, 1) for illustrative purposes, though
the method should extend to a more general context with multiple parameters and more
complex priors.

First of all, construct the auxiliary parameters 31, ..., 3,, with prior distributions

61~U(0,i)
m

62NU(laz)
m m

Next, foreach ¢ = 1, ..., m apply a bootstrap filter using N particles with /3 replaced by

K2
m

B;. From each we obtain a sample P(S]y1., 5 € [=21, L]) whose density approximates the
truncated posterior distribution p(S3|y1.¢, 5 € [, £]).

To complete the process we need to combine the samples P(Bly14, B € [+, L])ina
meaningful way to approximate a sample from p(3|y1.¢). Theoretically, by the definition
of a truncated distribution, we would like to weight each sample P(S|y1.¢, 8 € =)
according to the probability that 3 lies within [*=%, £]. However, it is likely this cannot

be computed directly and so we use an alternative weighting approach. There may be a

variety of ways to achieve this, but we suggest that foreachi = 1, ..., N and particle (z); €

81

p(ﬁ’ylzt,ﬁ € [%, #]) we assign the weight

H(y1:4] (71:0) (6.9)

IIMZ

equal to the mean log-likelihood of the state trajectories where (21.1); is the state trajec-
tory corresponding to particle (z);. If we denote the weighted sample of P(3|y1.¢, 8 €

(=1, L]) by P, (i), then we claim a weighted sample which approximately corresponds to
the posterior p(3|yi.¢) is
Py(Blyr1) EB (6.10)

where €D denotes the concatenation of samples. We may then resample according to the
weights to produce an unweighted sample if desired.

In conclusion, we consider the drawbacks and benefits of this algorithm. The error in-
curred in this process is analogous to that incurred when approximating a function by
piecewise linear maps. That is, the combination of weighted samples we use to approx-
imate the posterior is potentially too rigid to capture the finer shape of the distribution.
However, to balance this, we gain a dramatic increase in available computational power
due to parallelisation. Furthermore, as previously explained it is the author’s belief that the
above process will help prevent particle depletion, and we encourage further theoretical and
experimental analysis to test this. On a final note, observe that a natural next step would
be to consider the above with the APF, and assess whether the added computational cost
is justified. In the case of the APF, care must be taken to prevent kernel smoothing creat-
ing parameter values outside of the area of the parameter space each instance is working in.

This can be achieved by truncating the multivariate normal distribution used to update

82

parameter values.

6.4 SUGGESTIONS FOR FURTHER READING

The few enhancements presented here are dwarfed by the abundance of innovations the
reader will find in recent literature. Most notably we would encourage the reader to browse
[26] for a description of how MCMC and SMC might be synthesised. Furthermore, articles
on target-tracking such as [27] should help to expand the readers awareness for the scope
of these methods. To explore the use of parallel computing with SMC, we recommend

(28] and [29]. The first gives a description of how to exploit graphics cards to affordably
perform parallel SMC on a large scale, and the second looks at efficient ways of resampling
in a parallel framework. For a more comprehensive reading list, we direct the reader to a

collection compiled by Doucet [30].

33

‘Day is ended, dim my eyes,
but journey long before me lies...”

J.R.R Tolkien, Bilbo’ Last Song

Summary

NUMEROUS CONCEPTS have been introduced and discussed throughout, and, in summary,
we present a continuous picture of our journey by recalling the key milestones.

In chapter one, recall that we were introduced to the concept of density dependance.
This allowed us to appreciate the state-space model in [1] on which our later methods re-
lied. Chapter 2 was brief but served an important purpose; we explored the widely popular
MCMC methodology in order to establish the benchmarks necessary to evaluate the effi-
cacy of our SMC implementations.

The subsequent three chapters constituted a comprehensive introduction to SMC, grad-

84

ually building in complexity as per the demands of our motivating example in population
dynamics. In chapter 3, we began with a survey of material found in [2], introducing the
theoretical basic of SMC methods. This included the approach known as importance sam-
pling. However, by recognising that efficiency dictated the need for a recursive method to
compute the weights, we introduced a special case of this known as sequential importance
sampling.

Next, in chapter 4 we introduced the bootstrap filter and looked at our first demonstra-
tion of a technical implementation of SMC in R. Importantly, we saw how the generic
bootstrap filter presented in [2] could be adapted for use with the Redhead population
model. The bootstrap filter proved effective for state, or population, estimation, but we
demonstrated its limitations in regards to parameter estimation. This moment highlighted
perhaps the single most important theme throughout, particle depletion.

In order to address particle depletion and effectively fit the population model, Chapter 5
introduced the auxiliary particle filter by West and Liu [3], based on the algorithm by Pitt
and Shepherd published in 1999 [22]. In particular, we saw how the methods of determin-
istic projection resampling and kernel smoothing with shrinkage help to prevent particle
depletion. Thematically, kernel smoothing induced a further process of Darwinian evolu-
tion in the parameters, and we discussed mitigating a loss of information caused by treating
fixed parameters as variable in time.

Our analysis of the performance of the APF was involved. Through a comparison of the
APF with the bootstrap filter we justified the added complexity in some instances. How-
ever, our conclusions varied significantly depending on the initial configuration of the APF.

In particular, we saw a complex relationship between N, § and accuracy arise. This moti-

85

vated an enhancement given in chapter 6 which we call adaptive shrinkage. In order to im-
plement adaptive shrinkage, it was necessary consider the effective sample size (ESS). From
this, we derived a formula for the ancestral ESS (AESS). In chapter 6, we also suggest an am-
bitious new method employing parallel computing and a partition of the parameter space.
Finally, to conclude this chapter, we gave recommendations for further reading.

In summation, we hope the reader is now well-equipped to appreciate the abundance
of SMC literature, and to implement or improve upon these methods in her own projects
and applications. Our lasting hope is that the reader finds their use fruitful, and receives a
similar joy to the author in working with a remarkable set of algorithms which beautifully

utilise the process of evolution which shapes our world.

86

o

Visualisation of Output

In this appendix we present the code which produces the visualisations and posterior sum-

mary statistics found throughout, to aid the reader who wishes to reproduce our results.

A.0.1 DATA WITH STANDARD ERRORS

Load data.
library(XLConnect)

data.input <— readWorksheetFromFile("duckdata.xlsx",sheet=1)

s |duck.N <— data.input[1:61,16]/1000

s|duck.SE <— data.input[1:61,17]/1000

87

10

20

endtime <— 61

Initialise x—axis labels.
yrs <— rep(NA, endtime)
for(t in l:endtime){

if(t %% 10 == 1){

yrs[t] <— 1954 + t

Original data with error bars.

plot(duck.N, col="green", xlab="Year",ylab="Population Size (in
millions)", xaxt="n",ylim=c(0.3,1.5))

axis(1l, at=1l:endtime, labels=yrs)

t <— c(1l:endtime)

arrows(t, duck.N—duck.SE, t, duck.N+duck.SE,length=0.02, angle=90,

code=3)

A.0.2 POPULATION ESTIMATES WITH QUANTILES

par(mfrow=c(1,1))

88

10

20

21

22

23

24

Initialise x—axis labels.
yrs <— rep(NA, endtime)
for(t in l:endtime){

1fCt %% 10 == 1){

yrs[t] <— 1954 + t

Plot of APF population estimates with 95% quantile intervals.
lowbound <— numeric(endtime)
upbound <— numeric(endtime)
for(t in l:endtime){
lowbound[t] <— quantile(swarm[,t], c(0.025))

upbound[t] <— quantile(swarm[,t], c(0.975))

est.pop <— numeric(endtime)
for(t in l:endtime){

est.pop[t] <— mean(swarm[,t])

plot(duck.N, col="green", xlab="Year", ylab="Population Size (in

millions)", xaxt="n", ylim=c(0.3,1.5))

89

25

26

27

28

29

30

10

axis(1l, at=1l:endtime, labels=yrs)

legend("topleft"”, pch = c(1, 1, NA), 1ty=c(NA,NA,2),

col = c("green", "red", "blue"), bty = "n", cex=0.8,
y.intersp = 2,
legend = c("data", "estimates", "quantiles"))

points(est.pop,col="red")
lines(est.pop, col="black™)
lines(lowbound, col="blue", 1ty=2)

lines(Cupbound, col="blue",lty=2)

A.0.3 PARAMETER DENSITIES

Function to compute mode of approximate density of sample.
estimate.mode <— function(x) {

d <— density(x)

return(d$x[which.max(d$y)1)

Compute parameter point estimates and quantiles.
est.max <— numeric(dim(par)[2])
est.mean <— numeric(dim(par)[2])

est.parlow <— numeric(dim(par)[2])

90

20

21

22

23

24

25

26

28

29

31

est.parhigh <— numeric(dim(par)[2])

for(i in 1l:dim(par)[2]1){
est.max[i] <— estimate.mode(par[,i])
est.mean[i] <— mean(par[,i])
est.parlow[i] <— quantile(par[,i], c(0.025))

est.parhigh[i] <— quantile(par[,1], c(0.975))

Create matrix containing posterior summary statistics.

est.par <— rbind(est.max, est.mean, est.parlow, est.parhigh)

colnames(est.par) <— c("b@","b1","b2","sigma™)

rownames(est.par) <— c("Posterior Maximum", "Posterior Mean", "2.5%
Quantile", "97.5% Quantile™)

print(est.par)

par(mfrow=c(2,2))

; |### Plot parameter posterior densities.

plot(density(par[,1]), main="b@ Posterior Distribution™)
plot(density(par[,2]), main="bl Posterior Distribution™)
plot(density(par[,3]), main="b2 Posterior Distribution™)

plot(density(par[,4]), main="sigma Posterior Distribution™)

91

Data from Trends in Duck Breeding

Populations 1955-2015

On the following page we present the data on the Redhead used in our analysis, extracted

trom Trends in Duck Breeding Populations 1955-2015.

92

Table B.1: Redhead population estimates with standard errors 1955-2015 (in thousands).

Year Population estimate Standard error | Year ~ Population estimate ~ Standard error
1955 539.9 98.9 1986 559.6 60.5
1956 757.3 119.3 1987 502.4 54.9
1957 509.1 95.7 1988 441.9 66.2
1958 457.1 66.2 1989 510.7 58.5
1959 498.8 55.5 1990 480.9 48.2
1960 497.8 67.0 1991 445.6 42.1
1961 323.3 38.8 1992 595.6 69.7
1962 507.5 60.0 1993 485.4 53.1
1963 413.4 61.9 1994 653.5 66.7
1964 528.1 67.3 1995 888.5 90.6
1965 599.3 77.7 1996 834.2 83.1
1966 713.1 77.6 1997 918.3 77.2
1967 735.7 79.0 1998 1005.1 122.9
1968 499.4 53.6 1999 973.4 69.5
1969 633.2 53.6 2000 926.3 78.1
1970 622.3 64.3 2001 712.0 70.2
1971 534.4 57.0 2002 564.8 69.0
1972 550.9 49.4 2003 636.8 56.6
1973 500.8 57.7 2004 605.3 51.5
1974 626.3 70.8 2005 592.3 51.7
1975 831.9 93.5 2006 916.3 86.1
1976 665.9 66.3 2007 1009.0 84.7
1977 634.0 79.9 2008 1056.0 120.4
1978 724.6 62.2 2009 1044.1 106.3
1979 697.5 63.8 2010 1064.2 99.5
1980 728.4 116.7 2011 1356.1 128.3
1981 594.9 62.0 2012 1269.9 99.2
1982 616.9 74.2 2013 1202.2 90.5
1983 711.9 83.3 2014 1278.7 102.5
1984 671.3 72.0 2015 1195.9 92.9
1985 578.2 67.1

93

References

[1] L.E.Jamieson and S. P. Brooks. Density dependence in North American ducks.
Animal Biodiversity and Conservation, 27.1:113-128, 2004.

[2] A.Doucet, N. De Freitas, and N. Gordon. An introduction to sequential monte
carlo methods. In A. Doucet, N. De Freitas, and N. Gordon, editors, Sequential
Monte Carlo Methods in Practice, chapter 1, pages 4-14. Springer, 2001.

[3] J. Liuand M. West. Combined parameter and state estimation in simulation-based
filtering. In A. Doucet, N. De Freitas, and N. Gordon, editors, Sequential Monte
Carlo Methods in Practice, chapter 10, pages 201-213. Springer, 2001.

[4] B.Dennisand M. L. Taper. Density Dependence in Time Series Observations of
Natural Populations: Estimation and Testing. Ecological Monographs, 64:205-224,
1994.

[S] M.C. Custer. 13.1.11. Life History Traits and Habitat Needs of the Redhead. Water-
fowl Management Handbook, 40,1993.

[6] U.S. Fish and Wildlife Service. Trends in duck breeding populations 1955-2015.
2015. http://www. fws.gov/migratorybirds/pdf/surveys-and-data/
Population-status/TrendsinDuckBreedingPopulations.pdf.

[7] M. A. Hixon and D. W. Johnson. Density dependence and independence. ¢S, 2009.

(8] CHui. Carrying capacity, population equilibrium, and environment’s maximal load.
Ecological Modelling, 192:317-320, 2006.

[9] Bonner S. R. King R.A. Parker S. Brooks L.E. Jamieson V. Grosbois B.J.T. Mor-
gan Giminez, O. and L. Thomas. WinBUGS for Population Ecologists: Bayesian
Modeling Using Markov Chain Monte Carlo Methods. In Modeling Demographic
Processes in Marked Populations, chapter 10, pages 885-918. Springer, 2009.

94

http://www.fws.gov/migratorybirds/pdf/surveys-and-data/Population-status/TrendsinDuckBreedingPopulations.pdf
http://www.fws.gov/migratorybirds/pdf/surveys-and-data/Population-status/TrendsinDuckBreedingPopulations.pdf

[10] T.Bayesand R. Price. An essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, f. r. s. communicated by mr. price, in a letter to
john canton, a. m. f. r. s. Philosophical Transactions, 53:370-418, 1763.

[11] P.M. Lee. Bayesian Statistics: An Introduction. Wiley, 2012.

[12] A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo Methods in
Practice. Springer, 2001.

[13] A Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin.
Bayesian data analysis. CRC press, 2013. Chapter 11.

[14] Bradley P. Carlin Mary Kathryn Cowles. Markov chain monte carlo convergence
diagnostics: A comparative review. Journal of the American Statistical Association,
91(434):883-904, 1996.

[15] J. Lawrence, R. Gramacy, L. Thomas, and S. Buckland. The importance of prior
choice in model selection: a density dependence example. Methods in Ecology and
Evolution, 4:25-33, 2013.

[16] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN
3-900051-07-0.

[17] S.P Brooks and A. Gelman. General methods for monitoring convergence of iter-
ative simulations. Journal of Computational and Graphical Statistics, 7.4:434-455,
1998.

. Fong, S. J. Godsill, A. Doucet, an . West. Monte carlo smoothing with ap-

18] W. Fong, S.]. Godsill, A. D d M. West. M 1 hing with ap
plication to audio signal enhancement. IEEE Transactions on Signal Processing,
50(2):438—449, Feb 2002.

[19] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear, non-
gaussian bayesian state estimation. /EE Proceedings-F, 140(2):104-113,1993.

[20] RStudio Team. RStudio: Integrated Development Environment for R. RStudio,
Inc., Boston, MA, 2015.

95

[21] M. West. Modelling with mixtures (with discussion). In Bayesian Statistics 4, pages
503-524. Oxford University Press, 1992.

[22] M.K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Jour-
nal of the American Statistical Association, 94(446):590-599, 1999.

[23] A.Kong. A note on importance sampling using standardized weights (technical

report 348). Department of Statistics, University of Chicago, 1992.

[24] L.Martino, V. Elvira, and F. Louzada. Effective sample size for importance sampling

based on discrepancy measures.

[25] J. D. Hol, T.B. Schon, and F. Gustafsson. On resampling algorithms for particle
filters. 2006.

[26] C. Andrieu, A. Doucet, and R. Holenstein. Particle markov chain monte carlo
methods. Journal of the Royal Statistical Society, 3:269-342, 2010.

[27] D. Salmond and N. Gordon. Particles and mixtures for tracking and guidance. In
A. Doucet, N. De Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods
in Practice, chapter 25, pages 516-532. Springer, 2001.

[28] A. Leeetal. On the udility of graphics cards to perform massively parallel implemen-
tation of advanced monte carlo. JCGS, 2010.

[29] A.Lee and N.-Whitely. Forest resampling for distributed SMC. Statistical Analysis
and Data Mining, 2015.

[30] A.Doucet. Sequential Monte Carlo Methods and Particle Filters Resources. http:

//www.stats.ox.ac.uk/~doucet/smc_resources.html.

96

http://www.stats.ox.ac.uk/~doucet/smc_resources.html
http://www.stats.ox.ac.uk/~doucet/smc_resources.html

	Introduction
	The North American Redhead
	Setting the scene
	Density dependant population model

	A Benchmark with MCMC
	The Bayesian paradigm
	The foundations of MCMC
	MCMC analysis of the Redhead population

	Sequential Monte Carlo Methods
	The Markovian model
	Importance sampling
	Sequential importance sampling
	The process

	Bootstrap Filters
	Motivation
	Mathematical overview
	The algorithm
	Implementation
	Population and parameter estimation

	Auxillary Particle Filters
	Parameter diversification
	Deterministic projection resampling
	The algorithm
	Implementation
	Results and Performance

	Enhancements and Optimisation
	Swarm diagnostics
	Adaptive shrinkage
	A parallel approach with prior partitioning
	Suggestions for further reading

	Summary
	Appendix Visualisation of Output
	Appendix Data from Trends in Duck Breeding Populations 1955-2015
	References

